This work studies the local theory for certain Rankin-Selberg convolutions for the standard $L$-function of degree $2ln$ of generic representations of ${\rm SO {2\ell+1 (F)\times {\rm GL n(F)$ over a local field $F$. The local integrals converge in a half-plane and continue meromorphically to the whole plane. One main result is the existence of local gamma and $L$-factors. The gamma factor is obtained as a proportionality factor of a functional equation satisfied by the local integrals. In addition, Soudry establishes the multiplicativity of the gamma factor ($l < n$, first variable). A special case of this result yields the unramified computation and involves a new idea not presented before. This presentation, which contains detailed proofs of the results, is useful to specialists in automorphic forms, representation theory, and $L$-functions, as well as to those in other areas who wish to apply these results or use them in other cases.
This book presents two new ideas: the justification of formal manipulations in the proof of multiplicativity of the gamma factor, through a uniqueness principle, and the use of a key identity in this proof to reduce the unramified computation in the case l
This book presents two new ideas: the justification of formal manipulations in the proof of multiplicativity of the gamma factor, through a uniqueness principle, and the use of a key identity in this proof to reduce the unramified computation in the case l
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno