29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

Relevance Feature Discovery is an innovative model that classifies terms into distinct categories and effectively updates term weights and distribution in patterns, hence boosting text mining performance.The terms that appear more frequently in relevant papers are regarded as positive specific terms. The terms that appear more frequently in irrelevant papers are classified as negative specific terms. The goal of Relevance Feature Discovery is to extract high-quality features that accurately represent the user's demands. This system outperforms term and pattern-based techniques.

Produktbeschreibung
Relevance Feature Discovery is an innovative model that classifies terms into distinct categories and effectively updates term weights and distribution in patterns, hence boosting text mining performance.The terms that appear more frequently in relevant papers are regarded as positive specific terms. The terms that appear more frequently in irrelevant papers are classified as negative specific terms. The goal of Relevance Feature Discovery is to extract high-quality features that accurately represent the user's demands. This system outperforms term and pattern-based techniques.
Autorenporträt
La profesora Rekha Kamble completó la Maestría en Tecnología en Ciencias de la Computación e Ingeniería del Instituto Textil y de Ingeniería de la Sociedad DKTE, India, en 2018. Trabaja como profesora asistente en el Departamento de Ciencias de la Computación e Ingeniería (AIML). Sus intereses de investigación incluyen minería de datos, minería de textos, tecnología blockchain y computación en la nube.