RESOURCE MANAGEMENT FOR ON-DEMAND MISSION-CRITICAL INTERNET OF THINGS APPLICATIONS Discover an insightful and up-to-date treatment of resource management in Internet of Things technology In Resource Management for On-Demand Mission-Critical Internet of Things Applications, an expert team of engineers delivers an insightful analytical perspective on modeling and decision support for mission-critical Internet of Things applications. The authors dissect the complex IoT ecosystem and provide a cross-layer perspective on the design and operation of IoT, especially in the context of smart and…mehr
RESOURCE MANAGEMENT FOR ON-DEMAND MISSION-CRITICAL INTERNET OF THINGS APPLICATIONS Discover an insightful and up-to-date treatment of resource management in Internet of Things technology In Resource Management for On-Demand Mission-Critical Internet of Things Applications, an expert team of engineers delivers an insightful analytical perspective on modeling and decision support for mission-critical Internet of Things applications. The authors dissect the complex IoT ecosystem and provide a cross-layer perspective on the design and operation of IoT, especially in the context of smart and connected communities. The book offers an economic perspective on resource management in IoT systems with a particular emphasis on three main areas: spectrum management via reservation, allocation of cloud/fog resources to IoT applications, and resource provisioning to smart city service requests. It leverages theories from dynamic mechanism design, optimal control theory, and spatial point processes, providing an overview of integrated decision-making frameworks. Finally, the authors discuss future directions and relevant problems on the economics of resource management from new perspectives, like security and resilience. Readers will also enjoy the inclusion of: * A thorough introduction and overview of IoT applications in smart cities, mission critical IoT services and requirements, and key metrics and research challenges * A comprehensive exploration of the allocation of spectrum resources to mission critical IoT applications, including the massive surge of IoT and spectrum scarcity problem * Practical discussions of the provisioning of cloud/fog computing resources to IoT applications, including allocation policy * In-depth examinations of resource provisioning to spatio-temporal service requests in smart cities Perfect for engineers working on Internet of Things and cyber-physical systems, Resource Management for On-Demand Mission-Critical Internet of Things Applications is also an indispensable reference for graduate students, researchers, and professors with an interest in IoT resource management.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Junaid Farooq is an Assistant Professor with the Department of Electrical and Computer Engineering at the University of Michigan-Dearborn. His research focus is on system level modeling, analysis, and the optimization of wireless communication networks. Quanyan Zhu, PhD, is Associate Professor with the Department of Electrical and Computer Engineering at New York University.
Inhaltsangabe
Preface xiii Acknowledgments xvii Acronyms xix Part I Introduction 1 1 Internet of Things-Enabled Systems and Infrastructure 3 1.1 Cyber-Physical Realm of IoT 3 1.2 IoT in Mission-Critical Applications 4 1.3 Overview of the Book 4 1.3.1 Main Topics 5 1.3.1.1 Dynamic Reservation ofWireless Spectrum Resources 5 1.3.1.2 Dynamic Cross-Layer Connectivity Using Aerial Networks 5 1.3.1.3 Dynamic Processes Over Multiplex Spatial Networks and Reconfigurable Design 6 1.3.1.4 Sequential Resource Allocation Under Spatio-Temporal Uncertainties 7 1.3.2 Notations 8 2 Resource Management in IoT-Enabled Interdependent Infrastructure 9 2.1 System Complexity and Scale 9 2.2 Network Geometry and Dynamics 10 2.3 On-Demand MC-IoT Services and Decision Avenues 11 2.4 Performance Metrics 12 2.5 Overview of Scientific Methodologies 12 Trim Size: 6in x 9in Single Column Farooq716099 ftoc.tex V1 - 06/02/2021 12:07pm Page viii _ _ _ _ viii Contents Part II Design Challenges in MC-IoT 15 3 Wireless Connectivity Challenges 17 3.1 Spectrum Scarcity and Reservation Based Access 17 3.2 Connectivity in Remote Environments 19 3.3 IoT Networks in Adversarial Environments 22 4 Resource and Service Provisioning Challenges 25 4.1 Efficient Allocation of Cloud Computing Resources 25 4.2 Dynamic Pricing in the Cloud 27 4.3 Spatio-Temporal Urban Service Provisioning 31 Part III Wireless Connectivity Mechanisms for MC-IoT 35 5 Reservation-Based Spectrum Access Contracts 37 5.1 Reservation of Time-Frequency Blocks in the Spectrum 37 5.1.1 Network Model 38 5.1.2 Utility of Spectrum Reservation 39 5.2 Dynamic Contract Formulation 39 5.2.1 Objective of Network Operator 40 5.2.2 Spectrum Reservation Contract 40 5.2.2.1 Operator Profitability 40 5.2.2.2 IC and IR Constraints 41 5.2.3 Optimal Contracting Problem 41 5.2.4 Solution to the Optimization Problem 42 5.3 Mission-Oriented Pricing and Refund Policies 44 5.4 Summary and Conclusion 47 6 Resilient Connectivity of IoT Using Aerial Networks 49 6.1 Connectivity in the Absence of Backhaul Networks 49 6.2 Aerial Base Station Modeling 50 6.3 Dynamic Coverage and ConnectivityMechanism 52 6.3.1 MAP-MSD Matching 53 6.3.2 MAP Dynamics and Objective 54 6.3.3 Controller Design 55 6.3.3.1 Attractive and Repulsive Function 55 6.3.3.2 Velocity Consensus Function 56 6.3.4 Individual Goal Function 56 6.3.5 Cluster Centers 57 6.4 Performance Evaluation and Simulation Results 58 6.4.1 Results and Discussion 59 6.4.1.1 Simulation Parameters 59 Trim Size: 6in x 9in Single Column Farooq716099 ftoc.tex V1 - 06/02/2021 12:07pm Page ix _ _ _ _ Contents ix 6.4.1.2 Resilience 61 6.4.1.3 Comparison 64 6.5 Summary and Conclusion 68 Part IV Secure Network DesignMechanisms 69 7 Wireless IoT Network Design in Adversarial Environments 71 7.1 Adversarial Network Scenarios 71 7.2 Modeling Device Capabilities and Network Heterogeneity 71 7.2.1 Network Geometry 72 7.2.2 Network Connectivity 73 7.2.2.1 Intra-layer Connectivity 73 7.2.2.2 Network-wide Connectivity 74 7.3 Information Dissemination Under Attacks 76 7.3.1 Information Dynamics 77 7.3.1.1 Single Message Propagation 78 7.3.1.2 MultipleMessage Propagation 79 7.3.2 Steady State Analysis 80 7.4 Mission-Specific Network Optimization 81 7.4.1 Equilibrium Solution 81 7.4.2 Secure and Reconfigurable Network Design 87 7.5 Simulation Results and Validation 91 7.5.1 Mission Scenarios 92 7.5.1.1 Intelligence 92 7.5.1.2 Encounter Battle 93 7.6 Summary and Conclusion 96 8 Network DefenseMechanisms Against Malware Infiltration 97 8.1 Malware Infiltration and Botnets 97 8.1.1 Network Model 97 8.1.2 Threat Model 99 8.2 PropagationModeling and Analysis 101 8.2.1 Modeling of Malware and Information Evolution 101 8.2.2 State Space Representation and Dynamics 102 8.2.3 Analysis of Equilibrium State 104 8.3 Patching Mechanism for Network Defense 109 8.3.1 Simulation Results 115 8.3.2 Simulation and Validation 120 8.4 Summary and Conclusion 124 Trim Size: 6in x 9in Single Column Farooq716099 ftoc.tex V1 - 06/02/2021 12:07pm Page x _ _ _ _ x Contents Part V Resource ProvisioningMechanisms 125 9 Revenue Maximizing Cloud Resource Allocation 127 9.1 Cloud Service Provider Resource Allocation Problem 127 9.2 Allocation and Pricing Rule 128 9.3 Dynamic Revenue Maximization 129 9.3.1 Adaptive and Resilient Allocation and Pricing Policy 134 9.4 Numerical Results and Discussions 135 9.5 Summary and Conclusion 139 10 Dynamic Pricing of Fog-Enabled MC-IoT Applications 141 10.1 Edge Computing and Delay Modeling 142 10.2 Allocation Efficiency and Quality of Experience 143 10.2.1 Allocation Policy 144 10.2.2 Pricing Policy 145 10.3 Optimal Allocation and Pricing Rules 146 10.3.1 Single VMI Case 146 10.3.2 Multiple VMI Case 149 10.3.3 Expected Revenue 155 10.3.4 Implementation of Dynamic VMI Allocation and Pricing 156 10.4 Numerical Experiments and Discussion 158 10.4.1 Experiment Setup 158 10.4.2 Simulation Results 158 10.4.3 Comparison with Other Approaches 160 10.5 Summary and Conclusion 164 11 Resource Provisioning to Spatio-Temporal Urban Services 165 11.1 Spatio-TemporalModeling of Urban Service Requests 165 11.1.1 Characterization of Service Requests 166 11.1.2 Utility of Resource Allocation 167 11.1.3 Problem Definition 169 11.2 Optimal Dynamic Allocation Mechanism 169 11.2.1 Dynamic Programming Solution 170 11.2.2 Computation and Implementation 172 11.3 Numerical Results and Discussion 174 11.3.1 Special Cases 174 11.3.1.1 Power Law Utility 174 11.3.1.2 Exponential Utility 176 11.3.2 Performance Evaluation and Comparison 178 11.4 Summary and Conclusions 180 Trim Size: 6in x 9in Single Column Farooq716099 ftoc.tex V1 - 06/02/2021 12:07pm Page xi _ _ _ _ Contents xi Part VI Conclusion 183 12 Challenges and Opportunities in the IoT Space 185 12.1 Broader Insights and Future Directions 185 12.1.1 Distributed Cross-Layer Intelligence for Mission-Critical IoT Services 185 12.1.1.1 Secure and Resilient Networking for Massive IoT Networks 185 12.1.1.2 Autonomic Networked CPS: From Military to Civilian Applications 186 12.1.1.3 Strategic Resource Provisioning for Mission-Critical IoT Services 187 12.2 Future Research Directions 187 12.2.1 Distributed Learning and Data Fusion for Security and Resilience in IoT-Driven Urban Applications 188 12.2.1.1 Data-Driven Learning and Decision-Making for Smart City Service Provisioning 188 12.2.1.2 Market Design for On-Demand and Managed IoT-Enabled Urban Services 189 12.2.1.3 Proactive Resiliency Planning and Learning for Disaster Management in Cities 190 12.2.2 Supply Chain Security and Resilience of IoT 190 12.3 Concluding Remarks 191 Bibliography 193 Index 207 _
Wir verwenden Cookies und ähnliche Techniken, um unsere Website für Sie optimal zu gestalten und Ihr Nutzererlebnis fortlaufend zu verbessern. Ihre Einwilligung durch Klicken auf „Alle Cookies akzeptieren“ können Sie jederzeit widerrufen oder anpassen. Bei „Nur notwendige Cookies“ werden die eingesetzten Techniken, mit Ausnahme derer, die für den Betrieb der Seite unerlässlich sind, nicht aktiviert. Um mehr zu erfahren, lesen Sie bitte unsere Datenschutzerklärung.
Notwendige Cookies ermöglichen die Grundfunktionen einer Website (z. B. Seitennavigation). Sie können nicht deaktiviert werden, da eine technische Notwendigkeit besteht.
Dieser Service wird für die grundlegende technische Funktionalität von buecher.de benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Google-Diensten wie z.B. reCaptcha benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Klaro der Cookie-Zustimmung benötigt.
Zweck: Notwendige
Funktionale Cookies sorgen für ein komfortables Nutzererlebnis und speichern z. B. ob Sie eingeloggt bleiben möchten. Diese Arten von Cookies dienen der „Wiedererkennung“, wenn Sie unsere Website besuchen.
Dieser Service wird für die erweiterte Funktionalität von buecher.de verwendet.
Zweck: Funktionale
Dieser Service wird verwendet, um eine sichere Anmeldung bei Google-Diensten zu ermöglichen und Ihre Sitzung zu verwalten.
Zweck: Funktionale
Personalisierung ermöglicht es uns, Inhalte und Anzeigen basierend auf Ihren Interessen und Ihrem Verhalten anzupassen. Dies umfasst die Anpassung von Empfehlungen und anderen Inhalten, um Ihre Erfahrung auf unserer Website zu verbessern.
Dieser Service wird für die Personalisierung der Besucher von buecher.de verwendet.
Zweck: Personalisierung
Wir nutzen Marketing Cookies, um die Relevanz unserer Seiten und der darauf gezeigten Werbung für Sie zu erhöhen und auf Ihre Interessen abzustimmen. Zu diesem Zweck teilen wir die Daten auch mit Drittanbietern.
Dieser Service wird für die Personalisierung von Werbung auf buecher.de verwendet.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über einen Partner aus dem Adtraction-Netzwerk zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Dieser Service wird genutzt, um nachzuvollziehen, über welche Partner-Website Sie zu uns gelangt sind. Dadurch können wir sicherstellen, dass Partner für vermittelte Verkäufe korrekt vergütet werden.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über das Preisvergleichsportal billiger.de zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Bing ist ein Werbedienst von Microsoft, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Produktempfehlungen und Werbung basierend auf Ihrem Surfverhalten bereitzustellen.
Zweck: Marketing
Criteo ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Facebook ist ein soziales Netzwerk, das es ermöglicht, mit anderen Nutzern zu kommunizieren und verschiedene Inhalte zu teilen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Getback ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Ads ist ein Werbedienst von Google, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Analytics ist ein Webanalysedienst, der von Google zur Erhebung von Nutzungsdaten verwendet wird. Diese Daten ermöglichen uns, unsere Website zu optimieren und Ihnen den bestmöglichen Service zu bieten.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Werbung anzuzeigen. Dadurch können wir Ihnen relevante Angebote und Empfehlungen bereitstellen.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Inhalte und gesponserte Empfehlungen bereitzustellen, die auf Ihrem bisherigen Nutzungsverhalten basieren.
Zweck: Marketing
RTB House ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden. Weitere Informationen finden Sie in der RTB House-Datenschutzerklärung.
Zweck: Marketing
Dieser Service wird genutzt, um nachvollziehen zu können, über welchen Partner Sie auf unsere Website gelangt sind. So kann die Vergütung von Partnern bei erfolgreichen Vermittlungen korrekt erfolgen.
Zweck: Marketing
Xandr ist ein Werbedienst von AT&T, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Mit diesem Schalter können Sie alle Dienste aktivieren oder deaktivieren.