26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
13 °P sammeln
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a reversible diffusion is a specific example of a reversible stochastic process. Reversible diffusions have an elegant characterization due to the Russian mathematician Andrey Nikolaevich Kolmogorov. Kolmogorov''s characterization of reversible diffusions Let B denote a d-dimensional standard Brownian motion; let b : Rd Rd be a Lipschitz continuous vector field. Let X : [0, + ) × Rd be an It diffusion defined on a probability space ( , , P) and solving…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a reversible diffusion is a specific example of a reversible stochastic process. Reversible diffusions have an elegant characterization due to the Russian mathematician Andrey Nikolaevich Kolmogorov. Kolmogorov''s characterization of reversible diffusions Let B denote a d-dimensional standard Brownian motion; let b : Rd Rd be a Lipschitz continuous vector field. Let X : [0, + ) × Rd be an It diffusion defined on a probability space ( , , P) and solving the It stochastic differential equation mathrm{d} X_{t} = b(X_{t}) , mathrm{d} t + mathrm{d} B_{t} with square-integrable initial condition, i.e. X0 L2( , , P; Rd). Then the following are equivalent: The process X is reversible with stationary distribution on Rd. There exists a scalar potential : Rd R such that b = , has Radon Nikodym derivative frac{mathrm{d} mu (x)}{mathrm{d} x} = exp left( - 2 Phi (x) right) and int_{mathbf{R}^{d}} exp left( - 2 Phi (x) right) , mathrm{d} x = 1.