Scaling Up Machine Learning
Herausgeber: Bekkerman, Ron; Langford, John; Bilenko, Mikhail
Scaling Up Machine Learning
Herausgeber: Bekkerman, Ron; Langford, John; Bilenko, Mikhail
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.
Andere Kunden interessierten sich auch für
Marcos Lopez de PradoAdvances in Financial Machine Learning48,99 €
Eitan Michael AzoffToward Human-Level Artificial Intelligence70,99 €
Eitan Michael AzoffToward Human-Level Artificial Intelligence163,99 €
Romain CouilletRandom Matrix Methods for Machine Learning81,99 €
Dattaraj RaoKeras to Kubernetes29,99 €
Hui Jiang (Toronto York University)Machine Learning Fundamentals66,99 €
Frances BuontempoGenetic Algorithms and Machine Learning for Programmers55,99 €-
-
-
In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 491
- Erscheinungstermin: 29. März 2018
- Englisch
- Abmessung: 254mm x 178mm x 25mm
- Gewicht: 934g
- ISBN-13: 9781108461740
- ISBN-10: 1108461743
- Artikelnr.: 52416733
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 491
- Erscheinungstermin: 29. März 2018
- Englisch
- Abmessung: 254mm x 178mm x 25mm
- Gewicht: 934g
- ISBN-13: 9781108461740
- ISBN-10: 1108461743
- Artikelnr.: 52416733
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. Scaling up machine learning: introduction Ron Bekkerman
Mikhail Bilenko and John Langford; Part I. Frameworks for Scaling Up Machine Learning: 2. Mapreduce and its application to massively parallel learning of decision tree ensembles Biswanath Panda
Joshua S. Herbach
Sugato Basu and Roberto J. Bayardo; 3. Large-scale machine learning using DryadLINQ Mihai Budiu
Dennis Fetterly
Michael Isard
Frank McSherry and Yuan Yu; 4. IBM parallel machine learning toolbox Edwin Pednault
Elad Yom-Tov and Amol Ghoting; 5. Uniformly fine-grained data parallel computing for machine learning algorithms Meichun Hsu
Ren Wu and Bin Zhang; Part II. Supervised and Unsupervised Learning Algorithms: 6. PSVM: parallel support vector machines with incomplete Cholesky Factorization Edward Chang
Hongjie Bai
Kaihua Zhu
Hao Wang
Jian Li and Zhihuan Qiu; 7. Massive SVM parallelization using hardware accelerators Igor Durdanovic
Eric Cosatto
Hans Peter Graf
Srihari Cadambi
Venkata Jakkula
Srimat Chakradhar and Abhinandan Majumdar; 8. Large-scale learning to rank using boosted decision trees Krysta M. Svore and Christopher J. C. Burges; 9. The transform regression algorithm Ramesh Natarajan and Edwin Pednault; 10. Parallel belief propagation in factor graphs Joseph Gonzalez
Yucheng Low and Carlos Guestrin; 11. Distributed Gibbs sampling for latent variable models Arthur Asuncion
Padhraic Smyth
Max Welling
David Newman
Ian Porteous and Scott Triglia; 12. Large-scale spectral clustering with Mapreduce and MPI Wen-Yen Chen
Yangqiu Song
Hongjie Bai
Chih-Jen Lin and Edward Y. Chang; 13. Parallelizing information-theoretic clustering methods Ron Bekkerman and Martin Scholz; Part III. Alternative Learning Settings: 14. Parallel online learning Daniel Hsu
Nikos Karampatziakis
John Langford and Alex J. Smola; 15. Parallel graph-based semi-supervised learning Jeff Bilmes and Amarnag Subramanya; 16. Distributed transfer learning via cooperative matrix factorization Evan Xiang
Nathan Liu and Qiang Yang; 17. Parallel large-scale feature selection Jeremy Kubica
Sameer Singh and Daria Sorokina; Part IV. Applications: 18. Large-scale learning for vision with GPUS Adam Coates
Rajat Raina and Andrew Y. Ng; 19. Large-scale FPGA-based convolutional networks Clement Farabet
Yann LeCun
Koray Kavukcuoglu
Berin Martini
Polina Akselrod
Selcuk Talay and Eugenio Culurciello; 20. Mining tree structured data on multicore systems Shirish Tatikonda and Srinivasan Parthasarathy; 21. Scalable parallelization of automatic speech recognition Jike Chong
Ekaterina Gonina
Kisun You and Kurt Keutzer.
Mikhail Bilenko and John Langford; Part I. Frameworks for Scaling Up Machine Learning: 2. Mapreduce and its application to massively parallel learning of decision tree ensembles Biswanath Panda
Joshua S. Herbach
Sugato Basu and Roberto J. Bayardo; 3. Large-scale machine learning using DryadLINQ Mihai Budiu
Dennis Fetterly
Michael Isard
Frank McSherry and Yuan Yu; 4. IBM parallel machine learning toolbox Edwin Pednault
Elad Yom-Tov and Amol Ghoting; 5. Uniformly fine-grained data parallel computing for machine learning algorithms Meichun Hsu
Ren Wu and Bin Zhang; Part II. Supervised and Unsupervised Learning Algorithms: 6. PSVM: parallel support vector machines with incomplete Cholesky Factorization Edward Chang
Hongjie Bai
Kaihua Zhu
Hao Wang
Jian Li and Zhihuan Qiu; 7. Massive SVM parallelization using hardware accelerators Igor Durdanovic
Eric Cosatto
Hans Peter Graf
Srihari Cadambi
Venkata Jakkula
Srimat Chakradhar and Abhinandan Majumdar; 8. Large-scale learning to rank using boosted decision trees Krysta M. Svore and Christopher J. C. Burges; 9. The transform regression algorithm Ramesh Natarajan and Edwin Pednault; 10. Parallel belief propagation in factor graphs Joseph Gonzalez
Yucheng Low and Carlos Guestrin; 11. Distributed Gibbs sampling for latent variable models Arthur Asuncion
Padhraic Smyth
Max Welling
David Newman
Ian Porteous and Scott Triglia; 12. Large-scale spectral clustering with Mapreduce and MPI Wen-Yen Chen
Yangqiu Song
Hongjie Bai
Chih-Jen Lin and Edward Y. Chang; 13. Parallelizing information-theoretic clustering methods Ron Bekkerman and Martin Scholz; Part III. Alternative Learning Settings: 14. Parallel online learning Daniel Hsu
Nikos Karampatziakis
John Langford and Alex J. Smola; 15. Parallel graph-based semi-supervised learning Jeff Bilmes and Amarnag Subramanya; 16. Distributed transfer learning via cooperative matrix factorization Evan Xiang
Nathan Liu and Qiang Yang; 17. Parallel large-scale feature selection Jeremy Kubica
Sameer Singh and Daria Sorokina; Part IV. Applications: 18. Large-scale learning for vision with GPUS Adam Coates
Rajat Raina and Andrew Y. Ng; 19. Large-scale FPGA-based convolutional networks Clement Farabet
Yann LeCun
Koray Kavukcuoglu
Berin Martini
Polina Akselrod
Selcuk Talay and Eugenio Culurciello; 20. Mining tree structured data on multicore systems Shirish Tatikonda and Srinivasan Parthasarathy; 21. Scalable parallelization of automatic speech recognition Jike Chong
Ekaterina Gonina
Kisun You and Kurt Keutzer.
1. Scaling up machine learning: introduction Ron Bekkerman
Mikhail Bilenko and John Langford; Part I. Frameworks for Scaling Up Machine Learning: 2. Mapreduce and its application to massively parallel learning of decision tree ensembles Biswanath Panda
Joshua S. Herbach
Sugato Basu and Roberto J. Bayardo; 3. Large-scale machine learning using DryadLINQ Mihai Budiu
Dennis Fetterly
Michael Isard
Frank McSherry and Yuan Yu; 4. IBM parallel machine learning toolbox Edwin Pednault
Elad Yom-Tov and Amol Ghoting; 5. Uniformly fine-grained data parallel computing for machine learning algorithms Meichun Hsu
Ren Wu and Bin Zhang; Part II. Supervised and Unsupervised Learning Algorithms: 6. PSVM: parallel support vector machines with incomplete Cholesky Factorization Edward Chang
Hongjie Bai
Kaihua Zhu
Hao Wang
Jian Li and Zhihuan Qiu; 7. Massive SVM parallelization using hardware accelerators Igor Durdanovic
Eric Cosatto
Hans Peter Graf
Srihari Cadambi
Venkata Jakkula
Srimat Chakradhar and Abhinandan Majumdar; 8. Large-scale learning to rank using boosted decision trees Krysta M. Svore and Christopher J. C. Burges; 9. The transform regression algorithm Ramesh Natarajan and Edwin Pednault; 10. Parallel belief propagation in factor graphs Joseph Gonzalez
Yucheng Low and Carlos Guestrin; 11. Distributed Gibbs sampling for latent variable models Arthur Asuncion
Padhraic Smyth
Max Welling
David Newman
Ian Porteous and Scott Triglia; 12. Large-scale spectral clustering with Mapreduce and MPI Wen-Yen Chen
Yangqiu Song
Hongjie Bai
Chih-Jen Lin and Edward Y. Chang; 13. Parallelizing information-theoretic clustering methods Ron Bekkerman and Martin Scholz; Part III. Alternative Learning Settings: 14. Parallel online learning Daniel Hsu
Nikos Karampatziakis
John Langford and Alex J. Smola; 15. Parallel graph-based semi-supervised learning Jeff Bilmes and Amarnag Subramanya; 16. Distributed transfer learning via cooperative matrix factorization Evan Xiang
Nathan Liu and Qiang Yang; 17. Parallel large-scale feature selection Jeremy Kubica
Sameer Singh and Daria Sorokina; Part IV. Applications: 18. Large-scale learning for vision with GPUS Adam Coates
Rajat Raina and Andrew Y. Ng; 19. Large-scale FPGA-based convolutional networks Clement Farabet
Yann LeCun
Koray Kavukcuoglu
Berin Martini
Polina Akselrod
Selcuk Talay and Eugenio Culurciello; 20. Mining tree structured data on multicore systems Shirish Tatikonda and Srinivasan Parthasarathy; 21. Scalable parallelization of automatic speech recognition Jike Chong
Ekaterina Gonina
Kisun You and Kurt Keutzer.
Mikhail Bilenko and John Langford; Part I. Frameworks for Scaling Up Machine Learning: 2. Mapreduce and its application to massively parallel learning of decision tree ensembles Biswanath Panda
Joshua S. Herbach
Sugato Basu and Roberto J. Bayardo; 3. Large-scale machine learning using DryadLINQ Mihai Budiu
Dennis Fetterly
Michael Isard
Frank McSherry and Yuan Yu; 4. IBM parallel machine learning toolbox Edwin Pednault
Elad Yom-Tov and Amol Ghoting; 5. Uniformly fine-grained data parallel computing for machine learning algorithms Meichun Hsu
Ren Wu and Bin Zhang; Part II. Supervised and Unsupervised Learning Algorithms: 6. PSVM: parallel support vector machines with incomplete Cholesky Factorization Edward Chang
Hongjie Bai
Kaihua Zhu
Hao Wang
Jian Li and Zhihuan Qiu; 7. Massive SVM parallelization using hardware accelerators Igor Durdanovic
Eric Cosatto
Hans Peter Graf
Srihari Cadambi
Venkata Jakkula
Srimat Chakradhar and Abhinandan Majumdar; 8. Large-scale learning to rank using boosted decision trees Krysta M. Svore and Christopher J. C. Burges; 9. The transform regression algorithm Ramesh Natarajan and Edwin Pednault; 10. Parallel belief propagation in factor graphs Joseph Gonzalez
Yucheng Low and Carlos Guestrin; 11. Distributed Gibbs sampling for latent variable models Arthur Asuncion
Padhraic Smyth
Max Welling
David Newman
Ian Porteous and Scott Triglia; 12. Large-scale spectral clustering with Mapreduce and MPI Wen-Yen Chen
Yangqiu Song
Hongjie Bai
Chih-Jen Lin and Edward Y. Chang; 13. Parallelizing information-theoretic clustering methods Ron Bekkerman and Martin Scholz; Part III. Alternative Learning Settings: 14. Parallel online learning Daniel Hsu
Nikos Karampatziakis
John Langford and Alex J. Smola; 15. Parallel graph-based semi-supervised learning Jeff Bilmes and Amarnag Subramanya; 16. Distributed transfer learning via cooperative matrix factorization Evan Xiang
Nathan Liu and Qiang Yang; 17. Parallel large-scale feature selection Jeremy Kubica
Sameer Singh and Daria Sorokina; Part IV. Applications: 18. Large-scale learning for vision with GPUS Adam Coates
Rajat Raina and Andrew Y. Ng; 19. Large-scale FPGA-based convolutional networks Clement Farabet
Yann LeCun
Koray Kavukcuoglu
Berin Martini
Polina Akselrod
Selcuk Talay and Eugenio Culurciello; 20. Mining tree structured data on multicore systems Shirish Tatikonda and Srinivasan Parthasarathy; 21. Scalable parallelization of automatic speech recognition Jike Chong
Ekaterina Gonina
Kisun You and Kurt Keutzer.







