Sean Gailmard
Statistical Modeling and Inference for Social Science
Sean Gailmard
Statistical Modeling and Inference for Social Science
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This textbook is an introduction to probability theory, statistical inference and statistical modeling for graduate students and practitioners beginning social science research.
Andere Kunden interessierten sich auch für
- Gary King / Ori Rosen / Martin A. Tanner (eds.)Ecological Inference40,99 €
- S D BradyModeling the External Risks of Airports for Policy Analysis13,99 €
- S M S EveringhamModeling the Demand for Cocaine16,99 €
- AnonymousThe Statesman's Year-book; Statistical and Historical Annual of the States of the World. Rev. After Official Return; Volume 186934,99 €
- James BirdThe Political and Statistical History of Gujarát25,99 €
- Elina TreygerModeling the Impact of Border-Enforcement Measures24,99 €
- Henry H WillisTerrorism Risk Modeling for Intelligence Analysis and Infrastructure Protection20,99 €
-
-
-
This textbook is an introduction to probability theory, statistical inference and statistical modeling for graduate students and practitioners beginning social science research.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 392
- Erscheinungstermin: 13. Januar 2017
- Englisch
- Abmessung: 229mm x 152mm x 23mm
- Gewicht: 635g
- ISBN-13: 9781316622223
- ISBN-10: 1316622223
- Artikelnr.: 47743548
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 392
- Erscheinungstermin: 13. Januar 2017
- Englisch
- Abmessung: 229mm x 152mm x 23mm
- Gewicht: 635g
- ISBN-13: 9781316622223
- ISBN-10: 1316622223
- Artikelnr.: 47743548
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Sean Gailmard is Associate Professor of Political Science at the University of California, Berkeley. Formerly an Assistant Professor at Northwestern University and at the University of Chicago, Gailmard earned his PhD in Social Science (economics and political science) from the California Institute of Technology. He is the author of Learning While Governing: Institutions and Accountability in the Executive Branch (2013), winner of the 2013 American Political Science Association's William H. Riker Prize for best book on political economy. His articles have been published in a variety of journals, including American Political Science Review, American Journal of Political Science and Journal of Politics. He currently serves as an associate editor for the Journal of Experimental Political Science and on the editorial boards for Political Science Research and Methods and Journal of Public Policy.
1. Introduction
2. Descriptive statistics: data and information
3. Observable data and data-generating processes
4. Probability theory: basic properties of data-generating processes
5. Expectation and moments: summaries of data-generating processes
6. Probability and models: linking positive theories and data-generating processes
7. Sampling distributions: linking data-generating processes and observable data
8. Hypothesis testing: assessing claims about the data-generating process
9. Estimation: recovering properties of the data-generating process
10. Causal inference: inferring causation from correlation
Afterword: statistical methods and empirical research.
2. Descriptive statistics: data and information
3. Observable data and data-generating processes
4. Probability theory: basic properties of data-generating processes
5. Expectation and moments: summaries of data-generating processes
6. Probability and models: linking positive theories and data-generating processes
7. Sampling distributions: linking data-generating processes and observable data
8. Hypothesis testing: assessing claims about the data-generating process
9. Estimation: recovering properties of the data-generating process
10. Causal inference: inferring causation from correlation
Afterword: statistical methods and empirical research.
1. Introduction
2. Descriptive statistics: data and information
3. Observable data and data-generating processes
4. Probability theory: basic properties of data-generating processes
5. Expectation and moments: summaries of data-generating processes
6. Probability and models: linking positive theories and data-generating processes
7. Sampling distributions: linking data-generating processes and observable data
8. Hypothesis testing: assessing claims about the data-generating process
9. Estimation: recovering properties of the data-generating process
10. Causal inference: inferring causation from correlation
Afterword: statistical methods and empirical research.
2. Descriptive statistics: data and information
3. Observable data and data-generating processes
4. Probability theory: basic properties of data-generating processes
5. Expectation and moments: summaries of data-generating processes
6. Probability and models: linking positive theories and data-generating processes
7. Sampling distributions: linking data-generating processes and observable data
8. Hypothesis testing: assessing claims about the data-generating process
9. Estimation: recovering properties of the data-generating process
10. Causal inference: inferring causation from correlation
Afterword: statistical methods and empirical research.