Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant…mehr
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches.
The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr Shan Luo is an Associate Professor in the Department of Engineering at King's College London, where he leads the Robot Perception Lab (RPL). Shan received a Ph.D. from King's College London for his work on robotic perception through tactile images. In 2016, he visited the MIT Computer and Artificial Intelligence Laboratory (CSAIL). He worked as a Postdoctoral Research Fellow at the University of Leeds and Harvard University, followed by a Lecturer (Assistant Professor) position at the University of Liverpool from 2018 to 2021. His current research focuses on developing intelligent robots capable of safe and agile interaction with the physical environment. His primary interests lie in visuo-tactile sensors, machine learning models for visual and tactile representation learning, and robotic manipulation of challenging objects like deformable and transparent items. He received the EPSRC New Investigator Award in 2021 and a UK-RAS Early Career Award in 2023.
Inhaltsangabe
Part I: Tactile sensing and perception 1. Tactile sensors for dexterous manipulation 2. Robotic perception of object properties using tactile sensing 3. Multimodal perception for dexterous manipulation 4. Using Machine Learning for Material Detection with Capacitive Proximity Sensors
Part II: Skill representation and learning 5. Admittance control: learning from human and collaboration with human 6. Sensorimotor Control for Dexterous Grasping--Inspiration from human hand 7. Efficient Haptic Learning and Interaction 8. From human to robot grasping: kinematics and forces synergies 9. Learning a form-closure grasping with attractive region in environment 10. Learning hierarchical control for robust in-hand manipulation 11. Learning Industrial Assembly by Guided-DDPG
Part III: Robotic hand adaptive control 12. The novel poly-articulated prosthetic hand Hannes: A survey study, and clinical evaluation 13. Enhancing vision control by tactile sensing for robotic manipulation 14. Neural Network enhanced Optimal Control of Manipulator 15. Towards Dexterous In-Hand Manipulation of Unknown Objects: A Feedback Based Control Approach 16. Learning Industrial Assembly by Guided-DDPG
Part I: Tactile sensing and perception 1. Tactile sensors for dexterous manipulation 2. Robotic perception of object properties using tactile sensing 3. Multimodal perception for dexterous manipulation 4. Using Machine Learning for Material Detection with Capacitive Proximity Sensors
Part II: Skill representation and learning 5. Admittance control: learning from human and collaboration with human 6. Sensorimotor Control for Dexterous Grasping--Inspiration from human hand 7. Efficient Haptic Learning and Interaction 8. From human to robot grasping: kinematics and forces synergies 9. Learning a form-closure grasping with attractive region in environment 10. Learning hierarchical control for robust in-hand manipulation 11. Learning Industrial Assembly by Guided-DDPG
Part III: Robotic hand adaptive control 12. The novel poly-articulated prosthetic hand Hannes: A survey study, and clinical evaluation 13. Enhancing vision control by tactile sensing for robotic manipulation 14. Neural Network enhanced Optimal Control of Manipulator 15. Towards Dexterous In-Hand Manipulation of Unknown Objects: A Feedback Based Control Approach 16. Learning Industrial Assembly by Guided-DDPG
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826