This book offers a comprehensive introduction to text mining and text analytics tailored for marketers. It presents key techniques for analyzing, compressing, classifying, and visualizing textual data and user-generated content (UGC), with a particular emphasis on using R software. These methods enable readers to effectively prepare and manipulate textual data to uncover actionable marketing insights. In today s digital landscape, analyzing online chatter, sentiment, preferences, and other forms of electronic word-of-mouth has become an essential skill for marketing researchers and…mehr
This book offers a comprehensive introduction to text mining and text analytics tailored for marketers. It presents key techniques for analyzing, compressing, classifying, and visualizing textual data and user-generated content (UGC), with a particular emphasis on using R software. These methods enable readers to effectively prepare and manipulate textual data to uncover actionable marketing insights.
In today s digital landscape, analyzing online chatter, sentiment, preferences, and other forms of electronic word-of-mouth has become an essential skill for marketing researchers and professionals. Through a rich collection of examples, program code, and hands-on exercises, this book equips both students and marketing managers with the theoretical foundation and practical skills needed to apply text-based data analysis to contemporary marketing challenges.
Artikelnr. des Verlages: 87037336, 978-3-032-08085-1
Seitenzahl: 350
Erscheinungstermin: 2. Januar 2026
Englisch
Abmessung: 235mm x 155mm
ISBN-13: 9783032080851
ISBN-10: 3032080851
Artikelnr.: 75365399
Herstellerkennzeichnung
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
ProductSafety@springernature.com
Autorenporträt
Daniel Dan is Assistant Professor and founder of the School of Applied Data Science at Modul University Vienna (MU Vienna), Austria. His expertise focuses on natural language processing, information retrieval, and data-driven marketing analytics in text-rich environments. His primary research, teaching, and collaboration interests include generative AI, sentiment and opinion mining, data visualization, and decision support. He teaches data science and AI courses at MU Vienna and AI at the WU (Vienna University of Economics and Business) Executive Academy. His work features in peer-reviewed journals and international conferences, and he contributes to EU-funded projects on information overload and digital well-being. Thomas Reutterer is Professor of Marketing at the Vienna University of Economics and Business (WU Vienna), Austria. His expertise focuses on analyzing, modeling and forecasting customer behavior in data-rich environments. His primary research, teaching and business consulting interests are focused in areas of retail and digital services, customer value and relationship management, and marketing models for customer-base analysis and decision support. His prior research has appeared in leading marketing and operations management journals.
Inhaltsangabe
Introduction.- Textual Data.- Obtaining Textual Data.- Basic Text Analysis and Statistics.- Clustering.- Classification.- Topic Modeling.- Sentiment Analysis.- Named Entity Recognition and Summarization.- Extracting Information from Embeddings.
Introduction.- Textual Data.- Obtaining Textual Data.- Basic Text Analysis and Statistics.- Clustering.- Classification.- Topic Modeling.- Sentiment Analysis.- Named Entity Recognition and Summarization.- Extracting Information from Embeddings.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826