98,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
49 °P sammeln
  • Broschiertes Buch

First published in 1998 this unique monograph treats topological, group-theoretic, and geometric problems of ideal hydrodynamics and magneto-hydrodynamics from a unified point of view.
It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. This book, now accepted as one of the main references in the field, is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry. The updated second edition also contains a survey of recent…mehr

Produktbeschreibung
First published in 1998 this unique monograph treats topological, group-theoretic, and geometric problems of ideal hydrodynamics and magneto-hydrodynamics from a unified point of view.

It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. This book, now accepted as one of the main references in the field, is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry. The updated second edition also contains a survey of recent developments in this now-flourishing field of topological and geometric hydrodynamics.

Autorenporträt
Vladimir Arnold is one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. His first mathematical work, which he did being a third-year student, was the solution of the 13th Hilbert problem about superpositions of continuous functions. His early work on KAM (Kolmogorov, Arnold, Moser) theory solved some of the outstanding problems of mechanics that grew out of fundamental questions raised by Poincare and Birkhoff based on the discovery of complex motions in celestial mechanics. In particular, the discovery of invariant tori, their dynamical implications, and attendant resonance phenomena is regarded today as one of the deepest and most significant achievements in the mathematical sciences. Arnold has been the advisor to more than 60 PhD students, and is famous for his seminar which thrived on his ability to discover new and beautiful problems. He is known all over the world for his textbooks which include the classics Mathematical Methods of Classical Mechanics, and Ordinary Differential Equations, as well as the more recent Topological Methods m Hydrodynamics written together with Boris Khesin, and Lectures on Partial Differential Equations.