The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976.
The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976.
Part I: 1. Generators and relations for groups of homeomorphisms Herbert Abels; 2. Affine embeddings of real Lie groups Nguiffo B. Boyom; 3. Equivariant regular neighbourhoods Allan L. Edmonds; 4. Characteristic numbers and equivariant spin cobordism V. Giambalvo; 5. Equivariant K-theory and cyclic subgroups Stefan Jakowski; 6. Z/p manifolds with low dimensional fixed point set Czes Kosniowski; 7. Gaps in the relative degree of symmetry Hsu-Tung Ku and Mei-Chin Ku; 8. Characters do not lie Arunas Liulevicius; 9. Actions of Z/2n on S3 Gerhard X. Ritter; 10. Periodic homeomorphisms on non-compact 3 manifolds Gerhard X. Ritter and Bradd E. Clark; 11. Equivariant function spaces and equivariant stable homotopy theory Reinhard Schulz; 12. A property of a characteristic class of an orbit foliation Haruo Suzuki; 13. Orbit structure for Lie group actions on higher cohomology projective spaces Per Tomter; 14. On the existence of group actions on certain manifolds Steven H. Weintraub; Part II. Summaries and Surveys: 15. Proper transformation groups H. Abels; 16. Problems on group actions on Q manifolds R. D. Anderson; 17. A non-abelian view of abelian varieties L. Auslander, B. Kolb and R. Tolimieri; 18. Non compact Lie groups of transformation and invariant operator measures on homogenous spaces in Hilbert space M. P. Heble; 19. Approximation of simplicial G-maps by equivariantly non degenerate maps Soren Illman; 20. Equivariant Riemann-Roch type theorems and related topics Jatsuo Kawakubo; 21. Knots and diffeomorphisms M. Kreck; 22. Some remarks on free differentiable involuetions on homotopy spheres Peter Löffler; 23. Compact transitive isometry spaces Gordon Lukesh; 24. A problem of Breson concerning homology manifolds W. J. R. Mitchell.
Part I: 1. Generators and relations for groups of homeomorphisms Herbert Abels; 2. Affine embeddings of real Lie groups Nguiffo B. Boyom; 3. Equivariant regular neighbourhoods Allan L. Edmonds; 4. Characteristic numbers and equivariant spin cobordism V. Giambalvo; 5. Equivariant K-theory and cyclic subgroups Stefan Jakowski; 6. Z/p manifolds with low dimensional fixed point set Czes Kosniowski; 7. Gaps in the relative degree of symmetry Hsu-Tung Ku and Mei-Chin Ku; 8. Characters do not lie Arunas Liulevicius; 9. Actions of Z/2n on S3 Gerhard X. Ritter; 10. Periodic homeomorphisms on non-compact 3 manifolds Gerhard X. Ritter and Bradd E. Clark; 11. Equivariant function spaces and equivariant stable homotopy theory Reinhard Schulz; 12. A property of a characteristic class of an orbit foliation Haruo Suzuki; 13. Orbit structure for Lie group actions on higher cohomology projective spaces Per Tomter; 14. On the existence of group actions on certain manifolds Steven H. Weintraub; Part II. Summaries and Surveys: 15. Proper transformation groups H. Abels; 16. Problems on group actions on Q manifolds R. D. Anderson; 17. A non-abelian view of abelian varieties L. Auslander, B. Kolb and R. Tolimieri; 18. Non compact Lie groups of transformation and invariant operator measures on homogenous spaces in Hilbert space M. P. Heble; 19. Approximation of simplicial G-maps by equivariantly non degenerate maps Soren Illman; 20. Equivariant Riemann-Roch type theorems and related topics Jatsuo Kawakubo; 21. Knots and diffeomorphisms M. Kreck; 22. Some remarks on free differentiable involuetions on homotopy spheres Peter Löffler; 23. Compact transitive isometry spaces Gordon Lukesh; 24. A problem of Breson concerning homology manifolds W. J. R. Mitchell.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826