Peter H. Westfall (Texas Tech University, Lubbock, USA), Andrea L. Arias
Understanding Regression Analysis
A Conditional Distribution Approach
Peter H. Westfall (Texas Tech University, Lubbock, USA), Andrea L. Arias
Understanding Regression Analysis
A Conditional Distribution Approach
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks and decision trees under a common umbrella; namely, the conditional distribution model.
Andere Kunden interessierten sich auch für
Peter H. WestfallUnderstanding Regression Analysis47,99 €
Christer Thrane (Norw Inland Norway University of Applied SciencesApplied Regression Analysis70,99 €
Keith McNultyHandbook of Regression Modeling in People Analytics105,99 €
Keith McNultyHandbook of Regression Modeling in People Analytics78,99 €
Holmes FinchApplied Regularization Methods for the Social Sciences61,99 €
Jeremy ArkesRegression Analysis187,99 €
Jeremy ArkesRegression Analysis91,99 €-
-
-
This book unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks and decision trees under a common umbrella; namely, the conditional distribution model.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 516
- Erscheinungstermin: 15. Juli 2020
- Englisch
- Abmessung: 260mm x 183mm x 32mm
- Gewicht: 1048g
- ISBN-13: 9780367458522
- ISBN-10: 0367458527
- Artikelnr.: 59866392
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 516
- Erscheinungstermin: 15. Juli 2020
- Englisch
- Abmessung: 260mm x 183mm x 32mm
- Gewicht: 1048g
- ISBN-13: 9780367458522
- ISBN-10: 0367458527
- Artikelnr.: 59866392
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Peter H. Westfall has a Ph.D. in Statistics from the University of California at Davis, as well as many years of teaching, research, and consulting experience, in a variety of statistics-related disciplines. He has published over 100 papers on statistical theory, methods, and applications; and he has written several books, spanning academic, practitioner, and textbook genres. He is former editor of The American Statistician, and a Fellow of the American Statistical Association. Andrea L. Arias is a Senior Operations Research Specialist at BNSF Railway. She has a Ph.D. in Industrial Engineering with a minor in Business Statistics from Texas Tech University, and a Doctoral Degree in Industrial Engineering from Pontificia Universidad Católica de Valparaiso, Chile. Her main areas of expertise include Mathematical Programming, Network Optimization, Statistics and Simulation. She is an active member of the Institute for Operations Research and the Management Sciences (INFORMS.)
1. Introduction to Regression Models 2. Estimating Regression Model
Parameters 3. The Classical Model and Its Consequences 4. Evaluating
Assumptions 5. Transformations 6. The Multiple Regression Model 7. Multiple
Regression from the Matrix Point of View 8. R-squared, Adjusted R-Squared,
the F Test, and Multicollinearity 9. Polynomial Models and Interaction
(Moderator) Analysis 10. ANOVA, ANCOVA, and Other Applications of Indicator
Variables 11. Variable Selection 12. Heteroscedasticity and
Non-independence 13. Models for Binary, Nominal, and Ordinal Response
Variables 14. Models for Poisson and Negative Binomial Response 15.
Censored Data Models 16. Outliers, Identification, Problems, and Remedies
(Good and Bad) 17. Neural Network Regression 18. Regression Trees 19.
Bookend
Parameters 3. The Classical Model and Its Consequences 4. Evaluating
Assumptions 5. Transformations 6. The Multiple Regression Model 7. Multiple
Regression from the Matrix Point of View 8. R-squared, Adjusted R-Squared,
the F Test, and Multicollinearity 9. Polynomial Models and Interaction
(Moderator) Analysis 10. ANOVA, ANCOVA, and Other Applications of Indicator
Variables 11. Variable Selection 12. Heteroscedasticity and
Non-independence 13. Models for Binary, Nominal, and Ordinal Response
Variables 14. Models for Poisson and Negative Binomial Response 15.
Censored Data Models 16. Outliers, Identification, Problems, and Remedies
(Good and Bad) 17. Neural Network Regression 18. Regression Trees 19.
Bookend
1. Introduction to Regression Models 2. Estimating Regression Model
Parameters 3. The Classical Model and Its Consequences 4. Evaluating
Assumptions 5. Transformations 6. The Multiple Regression Model 7. Multiple
Regression from the Matrix Point of View 8. R-squared, Adjusted R-Squared,
the F Test, and Multicollinearity 9. Polynomial Models and Interaction
(Moderator) Analysis 10. ANOVA, ANCOVA, and Other Applications of Indicator
Variables 11. Variable Selection 12. Heteroscedasticity and
Non-independence 13. Models for Binary, Nominal, and Ordinal Response
Variables 14. Models for Poisson and Negative Binomial Response 15.
Censored Data Models 16. Outliers, Identification, Problems, and Remedies
(Good and Bad) 17. Neural Network Regression 18. Regression Trees 19.
Bookend
Parameters 3. The Classical Model and Its Consequences 4. Evaluating
Assumptions 5. Transformations 6. The Multiple Regression Model 7. Multiple
Regression from the Matrix Point of View 8. R-squared, Adjusted R-Squared,
the F Test, and Multicollinearity 9. Polynomial Models and Interaction
(Moderator) Analysis 10. ANOVA, ANCOVA, and Other Applications of Indicator
Variables 11. Variable Selection 12. Heteroscedasticity and
Non-independence 13. Models for Binary, Nominal, and Ordinal Response
Variables 14. Models for Poisson and Negative Binomial Response 15.
Censored Data Models 16. Outliers, Identification, Problems, and Remedies
(Good and Bad) 17. Neural Network Regression 18. Regression Trees 19.
Bookend







