Dieses zweibändige Werk handelt von Mathematik und ihrer Geschichte. Die sorgfältige Analyse dessen, was die Alten bewiesen - meist sehr viel mehr, als sie ahnten -, führt zu einem besseren Verständnis der Geschichte und zu einer guten Motivation und einem ebenfalls besseren Verständnis heutiger Mathematik.
Die Themen des ersten Bandes reichen von der Konstruktion der reellen Zahlen mittels dedekindscher Schnitte bis hin zum Fundamentalsatz der Algebra. Dazwischen werden die Bücher V bis X der euklidischen Elemente abgehandelt, wobei insbesondere die eudoxische Proportionenlehre (Buch V) eine zentrale Rolle spielt. Sie bietet einen eleganten Zugang zu den Logarithmen, so dass auch Neper ausführlich zu Wort kommt. Weitere Themen sind die natürlichen Zahlen und das Induktionsprinzip; die Entdeckung der Lösungsformeln der Gleichungen dritten und vierten Grades; Polynomringe in beliebig vielen Unbestimmten; symmetrische Polynome und der Satz von Waring.
Die Themen des ersten Bandes reichen von der Konstruktion der reellen Zahlen mittels dedekindscher Schnitte bis hin zum Fundamentalsatz der Algebra. Dazwischen werden die Bücher V bis X der euklidischen Elemente abgehandelt, wobei insbesondere die eudoxische Proportionenlehre (Buch V) eine zentrale Rolle spielt. Sie bietet einen eleganten Zugang zu den Logarithmen, so dass auch Neper ausführlich zu Wort kommt. Weitere Themen sind die natürlichen Zahlen und das Induktionsprinzip; die Entdeckung der Lösungsformeln der Gleichungen dritten und vierten Grades; Polynomringe in beliebig vielen Unbestimmten; symmetrische Polynome und der Satz von Waring.
Aus den Rezensionen:
"... An vielen Stellen ermöglicht der Autor einen tiefen Einblick in seine Forschungstätigkeit, wenn er verschiedene Übersetzungen untereinander und mit dem Originaltext vergleicht; ein sehr anschauliches Beispiel von Quellenkritik. Bei solchen Gelegenheiten werden auch die Ursprünge von Wörtern und Begriffen erklärt ... Der Autor bringt auch Anekdoten ... Damit empfindet man die Lektüre dieses Buches als kurzweilig ..." (M. Kronfellner, in: IMN Internationale Mathematische Nachrichten, December/2011, Issue 218, S. 55)
"... An vielen Stellen ermöglicht der Autor einen tiefen Einblick in seine Forschungstätigkeit, wenn er verschiedene Übersetzungen untereinander und mit dem Originaltext vergleicht; ein sehr anschauliches Beispiel von Quellenkritik. Bei solchen Gelegenheiten werden auch die Ursprünge von Wörtern und Begriffen erklärt ... Der Autor bringt auch Anekdoten ... Damit empfindet man die Lektüre dieses Buches als kurzweilig ..." (M. Kronfellner, in: IMN Internationale Mathematische Nachrichten, December/2011, Issue 218, S. 55)