Kader Gaid
Wastewater Reuse, Volume 1
Kader Gaid
Wastewater Reuse, Volume 1
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Water issues are inextricably linked to sustainable development since water must meet the needs of present and future generations. The reuse of wastewater is a socioeconomic challenge for the development of drinking water and wastewater services. It has the following advantages: it increases usable water resources, preserves natural resources and alleviates water shortages caused by climate change. Wastewater Reuse 1 provides a comprehensive and educational overview of the many ways wastewater can be reused, the variety of treatments, their performance, their conditions of use and how to…mehr
Andere Kunden interessierten sich auch für
- Viatcheslav V TikhomirovHydrogeochemistry Fundamentals and Advances, Mass Transfer and Mass Transport259,99 €
- Flood Risk Science and Management386,99 €
- Water28,99 €
- Jerry P FairleyModels and Modeling88,99 €
- Robert C BrearsUrban Water Security131,99 €
- Boris FaybishenkoGroundwater Vulnerability75,99 €
- Viatcheslav V TikhomirovHydrogeochemistry Fundamentals and Advances, Environmental Analysis of Groundwater248,99 €
-
-
-
Water issues are inextricably linked to sustainable development since water must meet the needs of present and future generations. The reuse of wastewater is a socioeconomic challenge for the development of drinking water and wastewater services. It has the following advantages: it increases usable water resources, preserves natural resources and alleviates water shortages caused by climate change. Wastewater Reuse 1 provides a comprehensive and educational overview of the many ways wastewater can be reused, the variety of treatments, their performance, their conditions of use and how to combine them to give wastewater a new lease on life. Droughts are already a concern in many parts of the world; however, we now have new technologies to rely on.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 6. Februar 2025
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 630g
- ISBN-13: 9781786309792
- ISBN-10: 1786309793
- Artikelnr.: 72705895
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 6. Februar 2025
- Englisch
- Abmessung: 234mm x 156mm x 19mm
- Gewicht: 630g
- ISBN-13: 9781786309792
- ISBN-10: 1786309793
- Artikelnr.: 72705895
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kader Gaid is a professor at the University of Science and Technology Houari Boumediene, Algeria. He specializes in Environmental Process Engineering and was an expert at the utilities company Veolia in France for over 25 years.
Chapter 1. Treated Wastewater Reuse: A New Resource 1
1.1. Observations on the current situation 2
1.2. Climate change 6
1.3. Solutions to reduce water stress 7
1.3.1. Direct and indirect reuse 8
1.4. The various purposes of reuse 12
1.5. Adapting to the local context 13
1.6. Policies and institutions to support reuse 14
1.7. Glossary 15
1.8. References 16
Chapter 2. Characterization of Treated Wastewater 19
2.1. Main parameters defining the quality of treated wastewater 19
2.1.1. Indicators of organic matter: biological oxygen demand, chemical
oxygen demand and total organic carbon 21
2.1.2. Suspended solids 25
2.1.3. Nitrogen 26
2.1.4. Phosphorus 27
2.1.5. Pesticides and endocrine disruptors 28
2.2. Microbiological aspects 33
2.2.1. Bacteria 35
2.2.2. Enteric viruses 37
2.2.3. Enteric protozoa 38
2.2.4. Helminth eggs 38
2.2.5. Fecal contamination indicators 40
2.3. References 45
Chapter 3. Applications and Uses of Reused Water 49
3.1. The different uses 54
3.1.1. Agriculture 54
3.1.2. Reuse in industry 67
3.1.3. Groundwater recharge 69
3.1.4. Recreational and environmental areas 71
3.1.5. Urban non-food uses 72
3.1.6. Drinking water 74
3.2. References 75
Chapter 4. Regulations 85
4.1. Regulations, state of the art and future challenges of municipal
wastewater treatment and water reuse 85
4.2. Regulations for treated wastewater reuse in France 87
4.2.1. Application to irrigation 89
4.3. European Directive 95
4.3.1. Minimum requirements applicable to reclaimed water intended for
agricultural irrigation 97
4.4. World Health Organization 100
4.4.1. Objectives of pathogen reduction for the different irrigation types
103
4.4.2. Monitoring/verification 108
4.5. Regulation on treated wastewater reuse in the United States 108
4.6. Regulation on water reuse in China 112
4.7. Australia 113
4.8. Mediterranean countries and the Middle East 115
4.9. Conclusion 116
4.10. References 121
Chapter 5. Treated Wastewater Reuse Planning 127
5.1. Project objectives and limitations 127
5.1.1. Preliminary investigations 128
5.1.2. Selection of potential markets 128
5.1.3. Assessment of alternatives 129
5.1.4. Awareness and education 130
5.1.5. Importance of terminology 131
5.1.6. Economic and legal aspects 131
5.2. References 132
Chapter 6. Treatment Technologies 133
6.1. Use of raw wastewater 135
6.2. Bases of the treatment process concept 136
6.3. References 139
Chapter 7. Tertiary Filtration 141
7.1. Gravity filtration without reagents 142
7.1.1. Rapid filters and high-rate filters (HRF) 142
7.1.2. Dual-media filters 144
7.1.3. Pressure filters 146
7.2. Gravity filtration with reagents 147
7.3. Filtration mechanisms. 148
7.4. Implementation parameters 150
7.4.1. Media 150
7.4.2. Media height ratio/d10 157
7.4.3. Effective size ratio 158
7.5. Size parameters: filtration rate and media height 159
7.5.1. Filter depth modelling 160
7.6. Operating parameters 162
7.6.1. Pressure drop in a clean filter 162
7.6.2. Retention capacity 165
7.6.3. Filter backwashing conditions 168
7.7. Filtration technologies 178
7.7.1. Conventional single-layer filters 180
7.7.2. High-rate filters 182
7.7.3. Example of tertiary filtration design on single-media filter 187
7.7.4. Dual-media filters 188
7.7.5. Filters under pressure 194
7.7.6. Performances of gravity filters 196
7.8. Mobile material filters 197
7.9. Rotary drum filters 198
7.9.1. Hydrotech filter characteristics 200
7.10. References 202
Chapter 8. Disinfection 207
8.1. Microorganisms present in treated wastewater 207
8.1.1. Bacteria 208
8.1.2. Viruses 210
8.1.3. Parasites 211
8.2. General rules of chemical disinfection 212
8.2.1. Mode of action of chemical disinfectants in treated wastewater 212
8.2.2. Reduction principle of the number of germs - "Log" units 214
8.3. Factors influencing the effectiveness of chemical disinfection 217
8.3.1. Turbidity 218
8.3.2. Presence of oxidizable matter 218
8.3.3. Injection mode and point 218
8.3.4. Design of the contact tank 219
8.4. Qualities of a good disinfectant 219
8.5. The main techniques of wastewater chemical disinfection 220
8.5.1. Chlorine disinfection 220
8.5.2. Chlorine dioxide disinfection 243
8.5.3. Chloramination 253
8.6. Disinfection with ozone 263
8.6.1. General information on ozone 264
8.6.2. Preparation and implementation of ozone 265
8.6.3. Transfer of ozone in water to be treated 266
8.6.4. Performance of disinfection with ozone. 268
8.7. Organic peracids: performic acid and peracetic acid 271
8.7.1. Production organic peracids 271
8.7.2. Disinfection and oxidation mechanisms of organic peracids 272
8.7.3. Performic acid 274
8.7.4. Peracetic acid 276
8.7.5. Degradation kinetics of peracids 276
8.7.6. Primary, secondary and tertiary wastewater applications 278
8.8. UV disinfection 281
8.8.1. General information on UV radiation 281
8.8.2. Inactivation mechanisms 282
8.8.3. Lethal dose and inactivation kinetics 284
8.8.4. Implementation 286
8.8.5. Sizing parameters 290
8.8.6. Factors influencing UV treatment efficiency 291
8.8.7. Performance 295
8.8.8. UV disinfection advantages and disadvantages in wastewater 300
8.9. Criteria for selecting a disinfection technique 302
8.10. References 304
Index 313
1.1. Observations on the current situation 2
1.2. Climate change 6
1.3. Solutions to reduce water stress 7
1.3.1. Direct and indirect reuse 8
1.4. The various purposes of reuse 12
1.5. Adapting to the local context 13
1.6. Policies and institutions to support reuse 14
1.7. Glossary 15
1.8. References 16
Chapter 2. Characterization of Treated Wastewater 19
2.1. Main parameters defining the quality of treated wastewater 19
2.1.1. Indicators of organic matter: biological oxygen demand, chemical
oxygen demand and total organic carbon 21
2.1.2. Suspended solids 25
2.1.3. Nitrogen 26
2.1.4. Phosphorus 27
2.1.5. Pesticides and endocrine disruptors 28
2.2. Microbiological aspects 33
2.2.1. Bacteria 35
2.2.2. Enteric viruses 37
2.2.3. Enteric protozoa 38
2.2.4. Helminth eggs 38
2.2.5. Fecal contamination indicators 40
2.3. References 45
Chapter 3. Applications and Uses of Reused Water 49
3.1. The different uses 54
3.1.1. Agriculture 54
3.1.2. Reuse in industry 67
3.1.3. Groundwater recharge 69
3.1.4. Recreational and environmental areas 71
3.1.5. Urban non-food uses 72
3.1.6. Drinking water 74
3.2. References 75
Chapter 4. Regulations 85
4.1. Regulations, state of the art and future challenges of municipal
wastewater treatment and water reuse 85
4.2. Regulations for treated wastewater reuse in France 87
4.2.1. Application to irrigation 89
4.3. European Directive 95
4.3.1. Minimum requirements applicable to reclaimed water intended for
agricultural irrigation 97
4.4. World Health Organization 100
4.4.1. Objectives of pathogen reduction for the different irrigation types
103
4.4.2. Monitoring/verification 108
4.5. Regulation on treated wastewater reuse in the United States 108
4.6. Regulation on water reuse in China 112
4.7. Australia 113
4.8. Mediterranean countries and the Middle East 115
4.9. Conclusion 116
4.10. References 121
Chapter 5. Treated Wastewater Reuse Planning 127
5.1. Project objectives and limitations 127
5.1.1. Preliminary investigations 128
5.1.2. Selection of potential markets 128
5.1.3. Assessment of alternatives 129
5.1.4. Awareness and education 130
5.1.5. Importance of terminology 131
5.1.6. Economic and legal aspects 131
5.2. References 132
Chapter 6. Treatment Technologies 133
6.1. Use of raw wastewater 135
6.2. Bases of the treatment process concept 136
6.3. References 139
Chapter 7. Tertiary Filtration 141
7.1. Gravity filtration without reagents 142
7.1.1. Rapid filters and high-rate filters (HRF) 142
7.1.2. Dual-media filters 144
7.1.3. Pressure filters 146
7.2. Gravity filtration with reagents 147
7.3. Filtration mechanisms. 148
7.4. Implementation parameters 150
7.4.1. Media 150
7.4.2. Media height ratio/d10 157
7.4.3. Effective size ratio 158
7.5. Size parameters: filtration rate and media height 159
7.5.1. Filter depth modelling 160
7.6. Operating parameters 162
7.6.1. Pressure drop in a clean filter 162
7.6.2. Retention capacity 165
7.6.3. Filter backwashing conditions 168
7.7. Filtration technologies 178
7.7.1. Conventional single-layer filters 180
7.7.2. High-rate filters 182
7.7.3. Example of tertiary filtration design on single-media filter 187
7.7.4. Dual-media filters 188
7.7.5. Filters under pressure 194
7.7.6. Performances of gravity filters 196
7.8. Mobile material filters 197
7.9. Rotary drum filters 198
7.9.1. Hydrotech filter characteristics 200
7.10. References 202
Chapter 8. Disinfection 207
8.1. Microorganisms present in treated wastewater 207
8.1.1. Bacteria 208
8.1.2. Viruses 210
8.1.3. Parasites 211
8.2. General rules of chemical disinfection 212
8.2.1. Mode of action of chemical disinfectants in treated wastewater 212
8.2.2. Reduction principle of the number of germs - "Log" units 214
8.3. Factors influencing the effectiveness of chemical disinfection 217
8.3.1. Turbidity 218
8.3.2. Presence of oxidizable matter 218
8.3.3. Injection mode and point 218
8.3.4. Design of the contact tank 219
8.4. Qualities of a good disinfectant 219
8.5. The main techniques of wastewater chemical disinfection 220
8.5.1. Chlorine disinfection 220
8.5.2. Chlorine dioxide disinfection 243
8.5.3. Chloramination 253
8.6. Disinfection with ozone 263
8.6.1. General information on ozone 264
8.6.2. Preparation and implementation of ozone 265
8.6.3. Transfer of ozone in water to be treated 266
8.6.4. Performance of disinfection with ozone. 268
8.7. Organic peracids: performic acid and peracetic acid 271
8.7.1. Production organic peracids 271
8.7.2. Disinfection and oxidation mechanisms of organic peracids 272
8.7.3. Performic acid 274
8.7.4. Peracetic acid 276
8.7.5. Degradation kinetics of peracids 276
8.7.6. Primary, secondary and tertiary wastewater applications 278
8.8. UV disinfection 281
8.8.1. General information on UV radiation 281
8.8.2. Inactivation mechanisms 282
8.8.3. Lethal dose and inactivation kinetics 284
8.8.4. Implementation 286
8.8.5. Sizing parameters 290
8.8.6. Factors influencing UV treatment efficiency 291
8.8.7. Performance 295
8.8.8. UV disinfection advantages and disadvantages in wastewater 300
8.9. Criteria for selecting a disinfection technique 302
8.10. References 304
Index 313
Chapter 1. Treated Wastewater Reuse: A New Resource 1
1.1. Observations on the current situation 2
1.2. Climate change 6
1.3. Solutions to reduce water stress 7
1.3.1. Direct and indirect reuse 8
1.4. The various purposes of reuse 12
1.5. Adapting to the local context 13
1.6. Policies and institutions to support reuse 14
1.7. Glossary 15
1.8. References 16
Chapter 2. Characterization of Treated Wastewater 19
2.1. Main parameters defining the quality of treated wastewater 19
2.1.1. Indicators of organic matter: biological oxygen demand, chemical
oxygen demand and total organic carbon 21
2.1.2. Suspended solids 25
2.1.3. Nitrogen 26
2.1.4. Phosphorus 27
2.1.5. Pesticides and endocrine disruptors 28
2.2. Microbiological aspects 33
2.2.1. Bacteria 35
2.2.2. Enteric viruses 37
2.2.3. Enteric protozoa 38
2.2.4. Helminth eggs 38
2.2.5. Fecal contamination indicators 40
2.3. References 45
Chapter 3. Applications and Uses of Reused Water 49
3.1. The different uses 54
3.1.1. Agriculture 54
3.1.2. Reuse in industry 67
3.1.3. Groundwater recharge 69
3.1.4. Recreational and environmental areas 71
3.1.5. Urban non-food uses 72
3.1.6. Drinking water 74
3.2. References 75
Chapter 4. Regulations 85
4.1. Regulations, state of the art and future challenges of municipal
wastewater treatment and water reuse 85
4.2. Regulations for treated wastewater reuse in France 87
4.2.1. Application to irrigation 89
4.3. European Directive 95
4.3.1. Minimum requirements applicable to reclaimed water intended for
agricultural irrigation 97
4.4. World Health Organization 100
4.4.1. Objectives of pathogen reduction for the different irrigation types
103
4.4.2. Monitoring/verification 108
4.5. Regulation on treated wastewater reuse in the United States 108
4.6. Regulation on water reuse in China 112
4.7. Australia 113
4.8. Mediterranean countries and the Middle East 115
4.9. Conclusion 116
4.10. References 121
Chapter 5. Treated Wastewater Reuse Planning 127
5.1. Project objectives and limitations 127
5.1.1. Preliminary investigations 128
5.1.2. Selection of potential markets 128
5.1.3. Assessment of alternatives 129
5.1.4. Awareness and education 130
5.1.5. Importance of terminology 131
5.1.6. Economic and legal aspects 131
5.2. References 132
Chapter 6. Treatment Technologies 133
6.1. Use of raw wastewater 135
6.2. Bases of the treatment process concept 136
6.3. References 139
Chapter 7. Tertiary Filtration 141
7.1. Gravity filtration without reagents 142
7.1.1. Rapid filters and high-rate filters (HRF) 142
7.1.2. Dual-media filters 144
7.1.3. Pressure filters 146
7.2. Gravity filtration with reagents 147
7.3. Filtration mechanisms. 148
7.4. Implementation parameters 150
7.4.1. Media 150
7.4.2. Media height ratio/d10 157
7.4.3. Effective size ratio 158
7.5. Size parameters: filtration rate and media height 159
7.5.1. Filter depth modelling 160
7.6. Operating parameters 162
7.6.1. Pressure drop in a clean filter 162
7.6.2. Retention capacity 165
7.6.3. Filter backwashing conditions 168
7.7. Filtration technologies 178
7.7.1. Conventional single-layer filters 180
7.7.2. High-rate filters 182
7.7.3. Example of tertiary filtration design on single-media filter 187
7.7.4. Dual-media filters 188
7.7.5. Filters under pressure 194
7.7.6. Performances of gravity filters 196
7.8. Mobile material filters 197
7.9. Rotary drum filters 198
7.9.1. Hydrotech filter characteristics 200
7.10. References 202
Chapter 8. Disinfection 207
8.1. Microorganisms present in treated wastewater 207
8.1.1. Bacteria 208
8.1.2. Viruses 210
8.1.3. Parasites 211
8.2. General rules of chemical disinfection 212
8.2.1. Mode of action of chemical disinfectants in treated wastewater 212
8.2.2. Reduction principle of the number of germs - "Log" units 214
8.3. Factors influencing the effectiveness of chemical disinfection 217
8.3.1. Turbidity 218
8.3.2. Presence of oxidizable matter 218
8.3.3. Injection mode and point 218
8.3.4. Design of the contact tank 219
8.4. Qualities of a good disinfectant 219
8.5. The main techniques of wastewater chemical disinfection 220
8.5.1. Chlorine disinfection 220
8.5.2. Chlorine dioxide disinfection 243
8.5.3. Chloramination 253
8.6. Disinfection with ozone 263
8.6.1. General information on ozone 264
8.6.2. Preparation and implementation of ozone 265
8.6.3. Transfer of ozone in water to be treated 266
8.6.4. Performance of disinfection with ozone. 268
8.7. Organic peracids: performic acid and peracetic acid 271
8.7.1. Production organic peracids 271
8.7.2. Disinfection and oxidation mechanisms of organic peracids 272
8.7.3. Performic acid 274
8.7.4. Peracetic acid 276
8.7.5. Degradation kinetics of peracids 276
8.7.6. Primary, secondary and tertiary wastewater applications 278
8.8. UV disinfection 281
8.8.1. General information on UV radiation 281
8.8.2. Inactivation mechanisms 282
8.8.3. Lethal dose and inactivation kinetics 284
8.8.4. Implementation 286
8.8.5. Sizing parameters 290
8.8.6. Factors influencing UV treatment efficiency 291
8.8.7. Performance 295
8.8.8. UV disinfection advantages and disadvantages in wastewater 300
8.9. Criteria for selecting a disinfection technique 302
8.10. References 304
Index 313
1.1. Observations on the current situation 2
1.2. Climate change 6
1.3. Solutions to reduce water stress 7
1.3.1. Direct and indirect reuse 8
1.4. The various purposes of reuse 12
1.5. Adapting to the local context 13
1.6. Policies and institutions to support reuse 14
1.7. Glossary 15
1.8. References 16
Chapter 2. Characterization of Treated Wastewater 19
2.1. Main parameters defining the quality of treated wastewater 19
2.1.1. Indicators of organic matter: biological oxygen demand, chemical
oxygen demand and total organic carbon 21
2.1.2. Suspended solids 25
2.1.3. Nitrogen 26
2.1.4. Phosphorus 27
2.1.5. Pesticides and endocrine disruptors 28
2.2. Microbiological aspects 33
2.2.1. Bacteria 35
2.2.2. Enteric viruses 37
2.2.3. Enteric protozoa 38
2.2.4. Helminth eggs 38
2.2.5. Fecal contamination indicators 40
2.3. References 45
Chapter 3. Applications and Uses of Reused Water 49
3.1. The different uses 54
3.1.1. Agriculture 54
3.1.2. Reuse in industry 67
3.1.3. Groundwater recharge 69
3.1.4. Recreational and environmental areas 71
3.1.5. Urban non-food uses 72
3.1.6. Drinking water 74
3.2. References 75
Chapter 4. Regulations 85
4.1. Regulations, state of the art and future challenges of municipal
wastewater treatment and water reuse 85
4.2. Regulations for treated wastewater reuse in France 87
4.2.1. Application to irrigation 89
4.3. European Directive 95
4.3.1. Minimum requirements applicable to reclaimed water intended for
agricultural irrigation 97
4.4. World Health Organization 100
4.4.1. Objectives of pathogen reduction for the different irrigation types
103
4.4.2. Monitoring/verification 108
4.5. Regulation on treated wastewater reuse in the United States 108
4.6. Regulation on water reuse in China 112
4.7. Australia 113
4.8. Mediterranean countries and the Middle East 115
4.9. Conclusion 116
4.10. References 121
Chapter 5. Treated Wastewater Reuse Planning 127
5.1. Project objectives and limitations 127
5.1.1. Preliminary investigations 128
5.1.2. Selection of potential markets 128
5.1.3. Assessment of alternatives 129
5.1.4. Awareness and education 130
5.1.5. Importance of terminology 131
5.1.6. Economic and legal aspects 131
5.2. References 132
Chapter 6. Treatment Technologies 133
6.1. Use of raw wastewater 135
6.2. Bases of the treatment process concept 136
6.3. References 139
Chapter 7. Tertiary Filtration 141
7.1. Gravity filtration without reagents 142
7.1.1. Rapid filters and high-rate filters (HRF) 142
7.1.2. Dual-media filters 144
7.1.3. Pressure filters 146
7.2. Gravity filtration with reagents 147
7.3. Filtration mechanisms. 148
7.4. Implementation parameters 150
7.4.1. Media 150
7.4.2. Media height ratio/d10 157
7.4.3. Effective size ratio 158
7.5. Size parameters: filtration rate and media height 159
7.5.1. Filter depth modelling 160
7.6. Operating parameters 162
7.6.1. Pressure drop in a clean filter 162
7.6.2. Retention capacity 165
7.6.3. Filter backwashing conditions 168
7.7. Filtration technologies 178
7.7.1. Conventional single-layer filters 180
7.7.2. High-rate filters 182
7.7.3. Example of tertiary filtration design on single-media filter 187
7.7.4. Dual-media filters 188
7.7.5. Filters under pressure 194
7.7.6. Performances of gravity filters 196
7.8. Mobile material filters 197
7.9. Rotary drum filters 198
7.9.1. Hydrotech filter characteristics 200
7.10. References 202
Chapter 8. Disinfection 207
8.1. Microorganisms present in treated wastewater 207
8.1.1. Bacteria 208
8.1.2. Viruses 210
8.1.3. Parasites 211
8.2. General rules of chemical disinfection 212
8.2.1. Mode of action of chemical disinfectants in treated wastewater 212
8.2.2. Reduction principle of the number of germs - "Log" units 214
8.3. Factors influencing the effectiveness of chemical disinfection 217
8.3.1. Turbidity 218
8.3.2. Presence of oxidizable matter 218
8.3.3. Injection mode and point 218
8.3.4. Design of the contact tank 219
8.4. Qualities of a good disinfectant 219
8.5. The main techniques of wastewater chemical disinfection 220
8.5.1. Chlorine disinfection 220
8.5.2. Chlorine dioxide disinfection 243
8.5.3. Chloramination 253
8.6. Disinfection with ozone 263
8.6.1. General information on ozone 264
8.6.2. Preparation and implementation of ozone 265
8.6.3. Transfer of ozone in water to be treated 266
8.6.4. Performance of disinfection with ozone. 268
8.7. Organic peracids: performic acid and peracetic acid 271
8.7.1. Production organic peracids 271
8.7.2. Disinfection and oxidation mechanisms of organic peracids 272
8.7.3. Performic acid 274
8.7.4. Peracetic acid 276
8.7.5. Degradation kinetics of peracids 276
8.7.6. Primary, secondary and tertiary wastewater applications 278
8.8. UV disinfection 281
8.8.1. General information on UV radiation 281
8.8.2. Inactivation mechanisms 282
8.8.3. Lethal dose and inactivation kinetics 284
8.8.4. Implementation 286
8.8.5. Sizing parameters 290
8.8.6. Factors influencing UV treatment efficiency 291
8.8.7. Performance 295
8.8.8. UV disinfection advantages and disadvantages in wastewater 300
8.9. Criteria for selecting a disinfection technique 302
8.10. References 304
Index 313