James Bagrow (University of Vermont), Yong-Yeol Ahn (Bloomington Indiana University)
Working with Network Data
A Data Science Perspective
James Bagrow (University of Vermont), Yong-Yeol Ahn (Bloomington Indiana University)
Working with Network Data
A Data Science Perspective
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Drawing examples from real-world networks, this essential book traces the methods behind network analysis and equips you with a toolbox of diverse methods and data modelling approaches. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.
Andere Kunden interessierten sich auch für
Henry D. I. Abarbanel (San Diego University of California)The Statistical Physics of Data Assimilation and Machine Learning82,99 €
Tao Xiang (Beijing Chinese Academy of Sciences)Density Matrix and Tensor Network Renormalization55,99 €
Tom Brughmans (Denmark Aarhus Universitet)Network Science in Archaeology53,99 €
Piet Van Mieghem (The Netherlands Technische Universiteit Delft)Graph Spectra for Complex Networks59,99 €
Lucas BottcherComputational Statistical Physics87,99 €
Tom Brughmans (Denmark Aarhus Universitet)Network Science in Archaeology123,99 €
Barton Zwiebach (Massachusetts Institute of Technology)A First Course in String Theory58,99 €-
-
-
Drawing examples from real-world networks, this essential book traces the methods behind network analysis and equips you with a toolbox of diverse methods and data modelling approaches. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 554
- Erscheinungstermin: 13. Juni 2024
- Englisch
- Abmessung: 248mm x 176mm x 39mm
- Gewicht: 1114g
- ISBN-13: 9781009212595
- ISBN-10: 1009212591
- Artikelnr.: 69868860
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 554
- Erscheinungstermin: 13. Juni 2024
- Englisch
- Abmessung: 248mm x 176mm x 39mm
- Gewicht: 1114g
- ISBN-13: 9781009212595
- ISBN-10: 1009212591
- Artikelnr.: 69868860
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
James Bagrow is Associate Professor in Mathematics & Statistics at the University of Vermont. He works at the intersection of data science, complex systems and applied mathematics, using cutting-edge methods, mathematical models and large-scale data to explore and understand complex networks and systems.
Contents
Preface
Part I. Background: 1. A whirlwind tour of network science
2. Network data across fields
3. Data ethics
4. Primer
Part II. Applications, Tools and Tasks: 5. The life-cycle of a network study
6. Gathering data
7. Extracting networks from data - the 'upstream task'
8. Implementation: storing and manipulating network data
9. Incorporating node and edge attributes
10. Awful errors and how to amend them
11. Explore and explain: statistics for network data
12. Understanding network structure and organization
13. Visualizing networks
14. Summarizing and comparing networks
15. Dynamics and dynamic networks
16. Machine learning
Interlude - Good practices for scientific computing
17. Research record-keeping
18. Data provenance
19. Reproducible and reliable code
20. Helpful tools
Part III. Fundamentals: 21. Networks demand network thinking: the friendship paradox
22. Network models
23. Statistical models and inference
24. Uncertainty quantification and error analysis
25. Ghost in the matrix: spectral methods for networks
26. Embedding and machine learning
27. Big data and scalability
Conclusion
Bibliography
Index.
Preface
Part I. Background: 1. A whirlwind tour of network science
2. Network data across fields
3. Data ethics
4. Primer
Part II. Applications, Tools and Tasks: 5. The life-cycle of a network study
6. Gathering data
7. Extracting networks from data - the 'upstream task'
8. Implementation: storing and manipulating network data
9. Incorporating node and edge attributes
10. Awful errors and how to amend them
11. Explore and explain: statistics for network data
12. Understanding network structure and organization
13. Visualizing networks
14. Summarizing and comparing networks
15. Dynamics and dynamic networks
16. Machine learning
Interlude - Good practices for scientific computing
17. Research record-keeping
18. Data provenance
19. Reproducible and reliable code
20. Helpful tools
Part III. Fundamentals: 21. Networks demand network thinking: the friendship paradox
22. Network models
23. Statistical models and inference
24. Uncertainty quantification and error analysis
25. Ghost in the matrix: spectral methods for networks
26. Embedding and machine learning
27. Big data and scalability
Conclusion
Bibliography
Index.
Contents
Preface
Part I. Background: 1. A whirlwind tour of network science
2. Network data across fields
3. Data ethics
4. Primer
Part II. Applications, Tools and Tasks: 5. The life-cycle of a network study
6. Gathering data
7. Extracting networks from data - the 'upstream task'
8. Implementation: storing and manipulating network data
9. Incorporating node and edge attributes
10. Awful errors and how to amend them
11. Explore and explain: statistics for network data
12. Understanding network structure and organization
13. Visualizing networks
14. Summarizing and comparing networks
15. Dynamics and dynamic networks
16. Machine learning
Interlude - Good practices for scientific computing
17. Research record-keeping
18. Data provenance
19. Reproducible and reliable code
20. Helpful tools
Part III. Fundamentals: 21. Networks demand network thinking: the friendship paradox
22. Network models
23. Statistical models and inference
24. Uncertainty quantification and error analysis
25. Ghost in the matrix: spectral methods for networks
26. Embedding and machine learning
27. Big data and scalability
Conclusion
Bibliography
Index.
Preface
Part I. Background: 1. A whirlwind tour of network science
2. Network data across fields
3. Data ethics
4. Primer
Part II. Applications, Tools and Tasks: 5. The life-cycle of a network study
6. Gathering data
7. Extracting networks from data - the 'upstream task'
8. Implementation: storing and manipulating network data
9. Incorporating node and edge attributes
10. Awful errors and how to amend them
11. Explore and explain: statistics for network data
12. Understanding network structure and organization
13. Visualizing networks
14. Summarizing and comparing networks
15. Dynamics and dynamic networks
16. Machine learning
Interlude - Good practices for scientific computing
17. Research record-keeping
18. Data provenance
19. Reproducible and reliable code
20. Helpful tools
Part III. Fundamentals: 21. Networks demand network thinking: the friendship paradox
22. Network models
23. Statistical models and inference
24. Uncertainty quantification and error analysis
25. Ghost in the matrix: spectral methods for networks
26. Embedding and machine learning
27. Big data and scalability
Conclusion
Bibliography
Index.







