A 1989 Brookhaven National Laboratory report dismissed suggestions for additional safety measures in a cost/benefit analysis. Measures which might be useful in a situation such as the Fukushima disaster, including inventory reduction, seismic-proof water systems, and covering the pool with solid materials after an accident, are discussed.
Allen Benjamin and others, writing in the Sandia report, state: "Analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. It has been found that the likelihood of clad failure due to rupture or melting following a complete drainage is extremely dependent on the storage configuration and the spent fuel decay period, and that the minimum prerequisite decay time to preclude clad failure may vary from less than 10 days for some storage configurations to several years for others."
The report discusses emergency aspects of pool water loss relevant to the Japanese situation. "An alternative way to maintain coolability, at least on a temporary basis, would be to provide an emergency water spray of sufficient intensity to remove the decay heat by its latent heat of vaporization. The water supply could be available from onsite hydrants, from onsite storage tanks, from remote portable storage tanks, or, preferably, from a combination of onsite and remote sources in order to reduce the risk of unavailability. Facility personnel would presumably be available to set up fire hoses and initiate the spray in the event of a complete power failure, and the spray would be continued until the source of the leak could be repaired."
The abstract for the BNL report reads: "This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.