Sterling K. Berberian
A First Course in Real Analysis (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Sterling K. Berberian
A First Course in Real Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book offers an initiation into mathematical reasoning, and into the mathematician's mind-set and reflexes. Specifically, the fundamental operations of calculus--differentiation and integration of functions and the summation of infinite series--are built, with logical continuity (i.e., "rigor"), starting from the real number system.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 16.66MB
Andere Kunden interessierten sich auch für
Stephen AbbottUnderstanding Analysis (eBook, PDF)32,95 €
Stephen AbbottUnderstanding Analysis (eBook, PDF)30,95 €
Naokant DeoIntroduction to Mathematical Analysis (eBook, PDF)56,95 €
Serge LangA First Course in Calculus (eBook, PDF)40,95 €
Alan F. BeardonLimits (eBook, PDF)40,95 €
Jerrold MarsdenCalculus I (eBook, PDF)30,95 €
Murray H. ProtterA First Course in Real Analysis (eBook, PDF)42,95 €-
-
-
The book offers an initiation into mathematical reasoning, and into the mathematician's mind-set and reflexes. Specifically, the fundamental operations of calculus--differentiation and integration of functions and the summation of infinite series--are built, with logical continuity (i.e., "rigor"), starting from the real number system.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 240
- Erscheinungstermin: 10. September 2012
- Englisch
- ISBN-13: 9781441985484
- Artikelnr.: 44000378
- Verlag: Springer US
- Seitenzahl: 240
- Erscheinungstermin: 10. September 2012
- Englisch
- ISBN-13: 9781441985484
- Artikelnr.: 44000378
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Axioms for the Field ? of Real Numbers.- 1.1. The field axioms.- 1.2. The order axioms.- 1.3. Bounded sets, LUB and GLB.- 1.4. The completeness axiom (existence of LUB's).- 2 First Properties of ?.- 2.1. Dual of the completeness axiom (existence of GLB's).- 2.2. Archimedean property.- 2.3. Bracket function.- 2.4. Density of the rationals.- 2.5. Monotone sequences.- 2.6. Theorem on nested intervals.- 2.7. Dedekind cut property.- 2.8. Square roots.- 2.9. Absolute value.- 3 Sequences of Real Numbers, Convergence.- 3.1. Bounded sequences.- 3.2. Ultimately, frequently.- 3.3. Null sequences.- 3.4. Convergent sequences.- 3.5. Subsequences, Weierstrass-Bolzano theorem.- 3.6. Cauchy's criterion for convergence.- 3.7. limsup and liminf of a bounded sequence.- 4 Special Subsets of ?.- 4.1. Intervals.- 4.2. Closed sets.- 4.3. Open sets, neighborhoods.- 4.4. Finite and infinite sets.- 4.5. Heine-Borel covering theorem.- 5 Continuity.- 5.1. Functions, direct images, inverse images.- 5.2. Continuity at a point.- 5.3. Algebra of continuity.- 5.4. Continuous functions.- 5.5. One-sided continuity.- 5.6. Composition.- 6 Continuous Functions on an Interval.- 6.1. Intermediate value theorem.- 6.2. n'th roots.- 6.3. Continuous functions on a closed interval.- 6.4. Monotonic continuous functions.- 6.5. Inverse function theorem.- 6.6. Uniform continuity.- 7 Limits of Functions.- 7.1. Deleted neighborhoods.- 7.2. Limits.- 7.3. Limits and continuity.- 7.4. ?,?characterization of limits.- 7.5. Algebra of limits.- 8 Derivatives.- 8.1. Differentiability.- 8.2. Algebra of derivatives.- 8.3. Composition (Chain Rule).- 8.4. Local max and min.- 8.5. Mean value theorem.- 9 Riemann Integral.- 9.1. Upper and lower integrals: the machinery.- 9.2. First properties of upper and lower integrals.- 9.3. Indefinite upper and lower integrals.- 9.4. Riemann-integrable functions.- 9.5. An application: log and exp.- 9.6. Piecewise pleasant functions.- 9.7.Darboux's theorem.- 9.8. The integral as a limit of Riemann sums.- 10 Infinite Series.- 10.1. Infinite series: convergence, divergence.- 10.2. Algebra of convergence.- 10.3. Positive-term series.- 10.4. Absolute convergence.- 11 Beyond the Riemann Integral.- 11.1 Negligible sets.- 11.2 Absolutely continuous functions.- 11.3 The uniqueness theorem.- 11.4 Lebesgue's criterion for Riemann-integrability.- 11.5 Lebesgue-integrable functions.- A.1 Proofs, logical shorthand.- A.2 Set notations.- A.3 Functions.- A.4 Integers.- Index of Notations.
1 Axioms for the Field ? of Real Numbers.- 1.1. The field axioms.- 1.2. The order axioms.- 1.3. Bounded sets, LUB and GLB.- 1.4. The completeness axiom (existence of LUB's).- 2 First Properties of ?.- 2.1. Dual of the completeness axiom (existence of GLB's).- 2.2. Archimedean property.- 2.3. Bracket function.- 2.4. Density of the rationals.- 2.5. Monotone sequences.- 2.6. Theorem on nested intervals.- 2.7. Dedekind cut property.- 2.8. Square roots.- 2.9. Absolute value.- 3 Sequences of Real Numbers, Convergence.- 3.1. Bounded sequences.- 3.2. Ultimately, frequently.- 3.3. Null sequences.- 3.4. Convergent sequences.- 3.5. Subsequences, Weierstrass-Bolzano theorem.- 3.6. Cauchy's criterion for convergence.- 3.7. limsup and liminf of a bounded sequence.- 4 Special Subsets of ?.- 4.1. Intervals.- 4.2. Closed sets.- 4.3. Open sets, neighborhoods.- 4.4. Finite and infinite sets.- 4.5. Heine-Borel covering theorem.- 5 Continuity.- 5.1. Functions, direct images, inverse images.- 5.2. Continuity at a point.- 5.3. Algebra of continuity.- 5.4. Continuous functions.- 5.5. One-sided continuity.- 5.6. Composition.- 6 Continuous Functions on an Interval.- 6.1. Intermediate value theorem.- 6.2. n'th roots.- 6.3. Continuous functions on a closed interval.- 6.4. Monotonic continuous functions.- 6.5. Inverse function theorem.- 6.6. Uniform continuity.- 7 Limits of Functions.- 7.1. Deleted neighborhoods.- 7.2. Limits.- 7.3. Limits and continuity.- 7.4. ?,?characterization of limits.- 7.5. Algebra of limits.- 8 Derivatives.- 8.1. Differentiability.- 8.2. Algebra of derivatives.- 8.3. Composition (Chain Rule).- 8.4. Local max and min.- 8.5. Mean value theorem.- 9 Riemann Integral.- 9.1. Upper and lower integrals: the machinery.- 9.2. First properties of upper and lower integrals.- 9.3. Indefinite upper and lower integrals.- 9.4. Riemann-integrable functions.- 9.5. An application: log and exp.- 9.6. Piecewise pleasant functions.- 9.7.Darboux's theorem.- 9.8. The integral as a limit of Riemann sums.- 10 Infinite Series.- 10.1. Infinite series: convergence, divergence.- 10.2. Algebra of convergence.- 10.3. Positive-term series.- 10.4. Absolute convergence.- 11 Beyond the Riemann Integral.- 11.1 Negligible sets.- 11.2 Absolutely continuous functions.- 11.3 The uniqueness theorem.- 11.4 Lebesgue's criterion for Riemann-integrability.- 11.5 Lebesgue-integrable functions.- A.1 Proofs, logical shorthand.- A.2 Set notations.- A.3 Functions.- A.4 Integers.- Index of Notations.







