Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.…mehr
This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Anders Hald, University of Copenhagen, Denmark
Inhaltsangabe
The Three Revolutions in Parametric Statistical Inference.- The Three Revolutions in Parametric Statistical Inference.- Binomial Statistical Inference.- James Bernoulli's Law of Large Numbers for the Binomial, 1713, and Its Generalization.- De Moivre's Normal Approximation to the Binomial, 1733, and Its Generalization.- Bayes's Posterior Distribution of the Binomial Parameter and His Rule for Inductive Inference, 1764.- Statistical Inference by Inverse Probability.- Laplace's Theory of Inverse Probability, 1774-1786.- A Nonprobabilistic Interlude: The Fitting of Equations to Data, 1750-1805.- Gauss's Derivation of the Normal Distribution and the Method of Least Squares, 1809.- Credibility and Confidence Intervals by Laplace and Gauss.- The Multivariate Posterior Distribution.- Edgeworth's Genuine Inverse Method and the Equivalence of Inverse and Direct Probability in Large Samples, 1908 and 1909.- Criticisms of Inverse Probability.- The Central Limit Theorem and Linear Minimum Variance Estimation by Laplace and Gauss.- Laplace's Central Limit Theorem and Linear Minimum Variance Estimation.- Gauss's Theory of Linear Minimum Variance Estimation.- Error Theory. Skew Distributions. Correlation. Sampling Distributions.- The Development of a Frequentist Error Theory.- Skew Distributions and the Method of Moments.- Normal Correlation and Regression.- Sampling Distributions Under Normality, 1876-1908.- The Fisherian Revolution, 1912-1935.- Fisher's Early Papers, 1912-1921.- The Revolutionary Paper, 1922.- Studentization, the F Distribution, and the Analysis of Variance, 1922-1925.- The Likelihood Function, Ancillarity, and Conditional Inference.
The Three Revolutions in Parametric Statistical Inference.- The Three Revolutions in Parametric Statistical Inference.- Binomial Statistical Inference.- James Bernoulli's Law of Large Numbers for the Binomial, 1713, and Its Generalization.- De Moivre's Normal Approximation to the Binomial, 1733, and Its Generalization.- Bayes's Posterior Distribution of the Binomial Parameter and His Rule for Inductive Inference, 1764.- Statistical Inference by Inverse Probability.- Laplace's Theory of Inverse Probability, 1774-1786.- A Nonprobabilistic Interlude: The Fitting of Equations to Data, 1750-1805.- Gauss's Derivation of the Normal Distribution and the Method of Least Squares, 1809.- Credibility and Confidence Intervals by Laplace and Gauss.- The Multivariate Posterior Distribution.- Edgeworth's Genuine Inverse Method and the Equivalence of Inverse and Direct Probability in Large Samples, 1908 and 1909.- Criticisms of Inverse Probability.- The Central Limit Theorem and Linear Minimum Variance Estimation by Laplace and Gauss.- Laplace's Central Limit Theorem and Linear Minimum Variance Estimation.- Gauss's Theory of Linear Minimum Variance Estimation.- Error Theory. Skew Distributions. Correlation. Sampling Distributions.- The Development of a Frequentist Error Theory.- Skew Distributions and the Method of Moments.- Normal Correlation and Regression.- Sampling Distributions Under Normality, 1876-1908.- The Fisherian Revolution, 1912-1935.- Fisher's Early Papers, 1912-1921.- The Revolutionary Paper, 1922.- Studentization, the F Distribution, and the Analysis of Variance, 1922-1925.- The Likelihood Function, Ancillarity, and Conditional Inference.
Rezensionen
From the reviews: "In this very enjoyable and interesting book, Hald ... presents his subject in a very lively style; many ideas and developments in statistics are treated with great clarity. It is very suitable as a course resource in history of statistical inference ... . Throughout, the author provides brief biographical sketches of researchers whose contributions to statistics are included here. ... A very useful and valuable work on the history of statistical inference. ... Summing Up: Highly recommended. Lower- and upper-division undergraduates through faculty." (D. V. Chopra, CHOICE, Vol. 44 (11), July, 2007) "This is a useful account of the historical development of the theory that underlies the empirically observed stability of data averages for large samples and how their precision may be measured. ... The resultant book is a suitable text for a one-semester course on what is arguably the core piece of statistical history." (C. C. Heyde, SIAM Review, Vol. 50 (1), 2008)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826