62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
Als Download kaufen
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
Jetzt verschenken
62,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
  • Format: ePub

A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods.

Produktbeschreibung
A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
John F. Monahan
Rezensionen
"I found the book very helpful. âEUR¦ the result is very nice, very readable. In particular, I like the idea of avoiding leaps in the development and proofs, or referring to other sources for the details of the proofs. This is a useful well-written instructive book."
~International Statistical Review

"This work provides a brief, and also complete, foundation for the theory of basic linear models . . . can be used for graduate courses on linear models."
~Nicoleta Breaz, Zentralblatt Math

". . . well written . . . would serve well as the textbook for an introductory course in linear models, or as references for researchers who would like to review the theory of linear models."
~Justine Shults, Journal of Biopharmaceutical Statistics