145,95 €
145,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
73 °P sammeln
145,95 €
145,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
73 °P sammeln
Als Download kaufen
145,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
73 °P sammeln
Jetzt verschenken
145,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
73 °P sammeln
  • Format: PDF

This book presents an experimental investigation of spin-mechanical phenomena in spin-lattice coupled systems. The author demonstrates that the resonant mechanical vibration of a micro magnetic mechanical oscillator changes in response to the magnetization process in the oscillator. The author also investigates a spin-current-induced volume modulation effect in a giant magnetostrictive material. The results presented here accelerate the exploration of cross-correlation effects between spintronics and micromechanics and provide insight into magnetomechanical properties associated with a spin current.…mehr

Produktbeschreibung
This book presents an experimental investigation of spin-mechanical phenomena in spin-lattice coupled systems. The author demonstrates that the resonant mechanical vibration of a micro magnetic mechanical oscillator changes in response to the magnetization process in the oscillator. The author also investigates a spin-current-induced volume modulation effect in a giant magnetostrictive material. The results presented here accelerate the exploration of cross-correlation effects between spintronics and micromechanics and provide insight into magnetomechanical properties associated with a spin current.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Hiroki Arisawa received his Ph.D. in physics from Tohoku University in 2023. His work focuses on spin-lattice couplings in solids in the field of spin mechanics. He experimentally investigates cross-correlation phenomena between spin angular momentum and mechanical motion via the spin-lattice coupling. During his Ph.D. program, he successfully demonstrated spin mechanical phenomena in several physical systems, such as a micro magnetic mechanical oscillator and a giant magnetostrictive material. He was awarded the Tohoku University President's Award in 2023.