This largely self-contained text:
- Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions
- Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces
- Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton's algorithm
- Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples
- Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files
Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.