112,95 €
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
56 °P sammeln
112,95 €
112,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
56 °P sammeln
Als Download kaufen
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
56 °P sammeln
Jetzt verschenken
112,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
56 °P sammeln
  • Format: PDF

This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized identification process by which to discover models that generalize and predict well. The investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks. Here is an essential reference for researchers and practitioners in the…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 15.87MB
Produktbeschreibung
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized identification process by which to discover models that generalize and predict well. The investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks. Here is an essential reference for researchers and practitioners in the fields of evolutionary computation, artificial neural networks and Bayesian inference, as well for advanced-level students of genetic programming.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Nikolay Nikolaev, Goldsmiths College, London, UK / Hitoshi Iba, University of Tokyo, Japan
Rezensionen
From the reviews: "This book describes induction of polynomial neural networks from data. ... This book may be used as a textbook for an advanced course on special topics of machine learning." (Jerzy W. Grzymala-Busse, Zentralblatt MATH, Vol. 1119 (21), 2007)