AI and Data Engineering for Healthcare (eBook, PDF)
Real-World Applications and Case Studies
Redaktion: Bandyopadhyay, Anjan; Gourisaria, Mahendra Kumar; Amin Hazarika, Ruhul; Mallik, Saurav; Sardar, Tanvir Habib
Alle Infos zum eBook verschenken
AI and Data Engineering for Healthcare (eBook, PDF)
Real-World Applications and Case Studies
Redaktion: Bandyopadhyay, Anjan; Gourisaria, Mahendra Kumar; Amin Hazarika, Ruhul; Mallik, Saurav; Sardar, Tanvir Habib
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book examines the transformative role of artificial intelligence (AI) and data engineering in revolutionizing the healthcare landscape. It presents cutting-edge developments ranging from predictive algorithms for disease diagnosis to large-scale data systems that enhance patient outcomes. By emphasizing the synergy between AI and data engineering, the book showcases practical applications in medical imaging, clinical diagnostics, and personalized treatment strategies.
It also thoughtfully examines ethical considerations, data privacy, and healthcare equity, particularly in underserved…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.49MB
AI and Data Engineering for Healthcare (eBook, ePUB)52,95 €
Aman KatariaExplainable AI for Healthcare (eBook, PDF)79,95 €
Internet of Things and Data Mining for Modern Engineering and Healthcare Applications (eBook, PDF)44,95 €
Smart Agriculture for Sustainable Practices (eBook, PDF)52,95 €
Combating Women's Health Issues with Machine Learning (eBook, PDF)49,95 €
Artificial Intelligence for Cyber Defense and Smart Policing (eBook, PDF)52,95 €
Chengliang YangData Driven Approaches for Healthcare (eBook, PDF)46,95 €-
-
-
It also thoughtfully examines ethical considerations, data privacy, and healthcare equity, particularly in underserved and rural populations.
Key Features:
- Explores state-of-the-art technologies in healthcare, including image segmentation, feature extraction, feature selection, and classification
- Provides real-world case studies, practical examples, and hands-on exercises for effective implementation of AI-driven solutions
- Bridges disciplines across computer science, data engineering, and biomedical sciences to foster cross-domain collaboration
- Highlights innovative research methodologies and their applications in AI-powered healthcare systems
- Discusses the role of AI in improving healthcare access, delivery, and outcomes across diverse populations
This book is ideal for professionals, researchers, and policymakers seeking to understand and shape the future of healthcare through the lens of AI and data-driven innovation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 424
- Erscheinungstermin: 16. Dezember 2025
- Englisch
- ISBN-13: 9781040550083
- Artikelnr.: 76009076
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 424
- Erscheinungstermin: 16. Dezember 2025
- Englisch
- ISBN-13: 9781040550083
- Artikelnr.: 76009076
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
ABCNN: Attention-Based Convolutional Neural Networks for Arrhythmia
Detection from ECG Data 3. Beyond the Black Box: Hybrid Deep Learning and
Multi-Domain Fusion for Explainable EEG-Based Emotion Recognition 4.
Economic Implications of Artificial Intelligence in Diabetes Management:
Opportunities, Challenges, and Regional Prospects for Odisha 5. AI in Early
Disease Detection and Prevention 6. AI in Medical Imaging: Revolutionizing
Diagnostics through AI-Powered Services and Case Studies 7. Artificial
Intelligence for Disease Prevention: From Diagnosis to Personalized
Treatment 8. Deep Learning for Cardiovascular Risk Prediction: Unveiling
Insights with RNNs and LSTMs 9. Predicting Protein-Protein Interactions:
Machine Learning Models, Obstacles, and Advancements 10. The Role of
Natural Language Processing in Analyzing Patient Records for Improved
Clinical Decision-Making 11. AI-Enabled IADF Framework for MHD Diagnosis
12. AI for Remote Healthcare and Telemedicine 13. Diabetic Retinopathy
Classification using Convolutional Neural Networks 14. Epidemiology and
Transmission Dynamics of SARS-CoV-2 15. Harnessing Generative Adversarial
Networks for Heart Disease Prediction: A Comprehensive Review
ABCNN: Attention-Based Convolutional Neural Networks for Arrhythmia
Detection from ECG Data 3. Beyond the Black Box: Hybrid Deep Learning and
Multi-Domain Fusion for Explainable EEG-Based Emotion Recognition 4.
Economic Implications of Artificial Intelligence in Diabetes Management:
Opportunities, Challenges, and Regional Prospects for Odisha 5. AI in Early
Disease Detection and Prevention 6. AI in Medical Imaging: Revolutionizing
Diagnostics through AI-Powered Services and Case Studies 7. Artificial
Intelligence for Disease Prevention: From Diagnosis to Personalized
Treatment 8. Deep Learning for Cardiovascular Risk Prediction: Unveiling
Insights with RNNs and LSTMs 9. Predicting Protein-Protein Interactions:
Machine Learning Models, Obstacles, and Advancements 10. The Role of
Natural Language Processing in Analyzing Patient Records for Improved
Clinical Decision-Making 11. AI-Enabled IADF Framework for MHD Diagnosis
12. AI for Remote Healthcare and Telemedicine 13. Diabetic Retinopathy
Classification using Convolutional Neural Networks 14. Epidemiology and
Transmission Dynamics of SARS-CoV-2 15. Harnessing Generative Adversarial
Networks for Heart Disease Prediction: A Comprehensive Review







