158,95 €
158,95 €
inkl. MwSt.
Erscheint vor. 07.10.25
payback
79 °P sammeln
158,95 €
158,95 €
inkl. MwSt.
Erscheint vor. 07.10.25

Alle Infos zum eBook verschenken
payback
79 °P sammeln
Als Download kaufen
158,95 €
inkl. MwSt.
Erscheint vor. 07.10.25
payback
79 °P sammeln
Jetzt verschenken
158,95 €
inkl. MwSt.
Erscheint vor. 07.10.25

Alle Infos zum eBook verschenken
payback
79 °P sammeln

Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
  • Format: ePub

Practical and informative, AI and Machine Learning for Mechanical and Electrical Engineering examines how artificial intelligence (AI) is changing the status quo in mechanical engineering, electrical systems, and management. Real-world examples and case studies demonstrate the application of AI in such diverse settings as industry and policymaking. This book illustrates how AI is playing a crucial role in enhancing productivity and innovation in various industries. It discusses transition methods and the ethical implications of using AI in mechanical engineering. Chapter highlights include the…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 13.22MB
Produktbeschreibung
Practical and informative, AI and Machine Learning for Mechanical and Electrical Engineering examines how artificial intelligence (AI) is changing the status quo in mechanical engineering, electrical systems, and management. Real-world examples and case studies demonstrate the application of AI in such diverse settings as industry and policymaking. This book illustrates how AI is playing a crucial role in enhancing productivity and innovation in various industries. It discusses transition methods and the ethical implications of using AI in mechanical engineering. Chapter highlights include the following:

  • Developing a smart algorithm to integrate fault detection and classification
  • Algorithms to investigate different testing scenarios for various anomalies in electric motors
  • Data fusion to detect and assess electromechanical damage
  • Neural networks for rolling bearing fault diagnosis
  • Evolutionary algorithms to optimize deep learning models for water industry forecasts
  • AI-based anomaly detection and root-cause analysis


An overarching theme is the transition from traditional mechanical, electrical, and management systems to AI-enabled smart systems. The book helps readers make sense of the challenges of integrating smart systems. It equips engineers with theoretical understanding as well as insight based on hands-on expertise. It shows how to better link and automate systems and improve productivity. This book not only shows how to implement smart solutions now but also shows the way to a more intelligent, productive, and interconnected future.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. T. Rajasanthosh Kumar is an associate professor of the Department of Mechanical Engineering at Oriental Institute of Science and Technology, Bhopal, India. Dr. Surendra Reddy Vinta is an associate professor of the School of Computer Science and Engineering at VIT-AP University, Amaravati, India. Dr. Sagar Dhanraj Pande is head of the School of Engineering and Technology at Pimpri Chinchwad University, Pune, Maharashtra, India. Dr. Aditya Khamparia is an assistant professor and coordinator of the Department of Computer Science at Babasaheb Bhimrao Ambedkar University, Satellite Centre, Amethi, India.