Bhubaneswar Mishra
Algorithmic Algebra (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Bhubaneswar Mishra
Algorithmic Algebra (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is based on a graduate computer science course entitled "Symbolic Computational Algebra" taught by the author at New York University. This book is meant for graduate students with training in theoretical computer science, who would like to do research in computational algebra or to understand the algorithms underlying currently available symbolic computational systems such as Mathematica, Maple or Axiom. The four main topics covered are Gröbner bases, characteristic sets, resultants and semialgebraic sets.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 27.41MB
Andere Kunden interessierten sich auch für
Computer Algebra in Scientific Computing (eBook, PDF)40,95 €
Algebraic and Algorithmic Aspects of Differential and Integral Operators (eBook, PDF)38,95 €
François E. CellierContinuous System Simulation (eBook, PDF)64,95 €
Max K. AgostonComputer Graphics and Geometric Modelling (eBook, PDF)96,95 €
J. C. M. BaetenProcess Algebra with Timing (eBook, PDF)40,95 €
Christoph MeinelMathematische Grundlagen der Informatik (eBook, PDF)20,67 €
Hartmut EhrigMathematisch-strukturelle Grundlagen der Informatik (eBook, PDF)29,99 €-
-
-
This book is based on a graduate computer science course entitled "Symbolic Computational Algebra" taught by the author at New York University. This book is meant for graduate students with training in theoretical computer science, who would like to do research in computational algebra or to understand the algorithms underlying currently available symbolic computational systems such as Mathematica, Maple or Axiom. The four main topics covered are Gröbner bases, characteristic sets, resultants and semialgebraic sets.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 420
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461243441
- Artikelnr.: 44058130
- Verlag: Springer US
- Seitenzahl: 420
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461243441
- Artikelnr.: 44058130
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.- 1.1 Prologue: Algebra and Algorithms.- 1.2 Motivations.- 1.3 Algorithmic Notations.- 1.4 Epilogue.- Bibliographic Notes.- 2 Algebraic Preliminaries.- 2.1 Introduction to Rings and Ideals.- 2.2 Polynomial Rings.- 2.3 Gröbner Bases.- 2.4 Modules and Syzygies.- 2.5 S-Polynomials.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 3 Computational Ideal Theory.- 3.1 Introduction.- 3.2 Strongly Computable Ring.- 3.3 Head Reductions and Gröbner Bases.- 3.4 Detachability Computation.- 3.5 Syzygy Computation.- 3.6 Hilbert's Basis Theorem: Revisited.- 3.7 Applications of Gröbner Bases Algorithms.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 4 Solving Systems of Polynomial Equations.- 4.1 Introduction.- 4.2 Triangular Set.- 4.3 Some Algebraic Geometry.- 4.4 Finding the Zeros.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 5 Characteristic Sets.- 5.1 Introduction.- 5.2 Pseudodivision and Successive Pseudodivision.- 5.3 Characteristic Sets.- 5.4 Properties of Characteristic Sets.- 5.5 Wu-Ritt Process.- 5.6 Computation.- 5.7 Geometric Theorem Proving.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 6 An Algebraic Interlude.- 6.1 Introduction.- 6.2 Unique Factorization Domain.- 6.3 Principal Ideal Domain.- 6.4 Euclidean Domain.- 6.5 Gauss Lemma.- 6.6 Strongly Computable Euclidean Domains.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 7 Resultants and Subresultants.- 7.1 Introduction.- 7.2 Resultants.- 7.3 Homomorphisms and Resultants.- 7.4 Repeated Factors in Polynomials and Discriminants.- 7.5 Determinant Polynomial.- 7.6 Polynomial Remainder Sequences.- 7.7 Subresultants.- 7.8 Homomorphisms and Subresultants.- 7.9 Subresultant Chain.- 7.10 Subresultant ChainTheorem.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 8 Real Algebra.- 8.1 Introduction.- 8.2 Real Closed Fields.- 8.3 Bounds on the Roots.- 8.4 Sturm's Theorem.- 8.5 Real Algebraic Numbers.- 8.6 Real Geometry.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- Appendix A: Matrix Algebra.- A.1 Matrices.- A.2 Determinant.- A.3 Linear Equations.
1 Introduction.- 1.1 Prologue: Algebra and Algorithms.- 1.2 Motivations.- 1.3 Algorithmic Notations.- 1.4 Epilogue.- Bibliographic Notes.- 2 Algebraic Preliminaries.- 2.1 Introduction to Rings and Ideals.- 2.2 Polynomial Rings.- 2.3 Gröbner Bases.- 2.4 Modules and Syzygies.- 2.5 S-Polynomials.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 3 Computational Ideal Theory.- 3.1 Introduction.- 3.2 Strongly Computable Ring.- 3.3 Head Reductions and Gröbner Bases.- 3.4 Detachability Computation.- 3.5 Syzygy Computation.- 3.6 Hilbert's Basis Theorem: Revisited.- 3.7 Applications of Gröbner Bases Algorithms.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 4 Solving Systems of Polynomial Equations.- 4.1 Introduction.- 4.2 Triangular Set.- 4.3 Some Algebraic Geometry.- 4.4 Finding the Zeros.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 5 Characteristic Sets.- 5.1 Introduction.- 5.2 Pseudodivision and Successive Pseudodivision.- 5.3 Characteristic Sets.- 5.4 Properties of Characteristic Sets.- 5.5 Wu-Ritt Process.- 5.6 Computation.- 5.7 Geometric Theorem Proving.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 6 An Algebraic Interlude.- 6.1 Introduction.- 6.2 Unique Factorization Domain.- 6.3 Principal Ideal Domain.- 6.4 Euclidean Domain.- 6.5 Gauss Lemma.- 6.6 Strongly Computable Euclidean Domains.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 7 Resultants and Subresultants.- 7.1 Introduction.- 7.2 Resultants.- 7.3 Homomorphisms and Resultants.- 7.4 Repeated Factors in Polynomials and Discriminants.- 7.5 Determinant Polynomial.- 7.6 Polynomial Remainder Sequences.- 7.7 Subresultants.- 7.8 Homomorphisms and Subresultants.- 7.9 Subresultant Chain.- 7.10 Subresultant ChainTheorem.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- 8 Real Algebra.- 8.1 Introduction.- 8.2 Real Closed Fields.- 8.3 Bounds on the Roots.- 8.4 Sturm's Theorem.- 8.5 Real Algebraic Numbers.- 8.6 Real Geometry.- Problems.- Solutions to Selected Problems.- Bibliographic Notes.- Appendix A: Matrix Algebra.- A.1 Matrices.- A.2 Determinant.- A.3 Linear Equations.







