Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design…mehr
This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design process. This volume is suitable for electrical engineers in academia as well as industry, antenna designers and engineers dealing with computationally-expensive design problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Anna Pietrenko-Dabrowska received the M.Sc. and Ph.D. degrees in electronic engineering from Gdansk University of Technology, Poland, in 1998 and 2007, respectively. Currently, she is an Associate Professor with Gdansk University of Technology, Poland. She is the Associate Editor of Int. J. Numerical Modeling, and Academic Editor of Int. J. Ant. Prop. She is also a guest co-editor of special issue of Int. J. Numerical Modeling (Advances in Forward and Inverse Surrogate Modeling for High-Frequency Design). She is a program committee member of international conferences (IEEE MTT-s Int. Conf. Num. EM and Multiphysics Modeling and Optim., NEMO 2019, Int. Conf. Comp. Science, ICCS 2019). Her research interests include simulation-driven design, design optimization, experiment design, control theory, modeling of microwave and antenna structures, numerical analysis. She is also a co-author of the book "Performance-driven surrogate modeling of high-frequency structures," (Springer, 2020). Slawomir Koziel received the M.Sc. and Ph.D. degrees in electronic engineering from Gdansk University of Technology, Poland, in 1995 and 2000, respectively. He also received the M.Sc. degrees in theoretical physics and in mathematics, in 2000 and 2002, respectively, as well as the PhD in mathematics in 2003, from the University of Gdansk, Poland. He is currently a Professor with the Department of Engineering, Reykjavik University, Iceland. His research interests include CAD and modeling of microwave circuits, simulation-driven design, surrogate-based optimization, space mapping, circuit theory, evolutionary computation and numerical analysis. In recent years, he has been working extensively on surrogate-based modeling and optimization techniques as well as computationally efficient simulation-driven design methods for microwave engineering and aerospace engineering. He has published several book chapters and over 1,000 research papers. He is a founder and director of Engineering Optimization & Modeling Center at Reykjavik University. Slawomir Koziel is a recipient of Fulbright Scholarship for the academic year 2003/2004. He has served on the Editorial Board of various international journals, program committee member as well as co-organizer of numerous special sessions and workshops at international conferences. He is an Associate Editor of several journals (IET Microwaves Ant. Prop., El. Lett., Int. J. Math. Modeling Num. Opt., Int. J. Numerical Modeling). He has also been a guest co-editor of several special issues of international journals (including Optimization and Engineering, Int. J. RF and Microwave CAE, Int. J. Math. Modelling and Num. Opt, IEEE Trans. Microwave Theory Techn.), as well as a co-author of several books, including "Performance-driven surrogate modeling of high-frequency structures," (Springer, 2020), "Simulation-based optimization of antenna arrays," (World Scientific, 2019), "Simulation-driven design by knowledge-based response correction techniques" (Springer, 2016), and "Antenna design by simulation-driven optimization" (Springer, 2014), and a co-editor of several other books.
Inhaltsangabe
1. Introduction.- 2. Antenna Design Using Electromagnetic Simulations.- 3. Surrogate-Based Optimization.- 4. Methodologies for Variable-Fidelity Optimization of Antenna Structures.- 5. Low-Fidelity Antenna Models.- 6. Simulation-Based UWB Antenna Design.- 7. Optimization of Dielectric Resonator Antennas.- 8. Surrogate-Based Optimization of Microstrip Broadband Antennas.- 9. Simulation-Driven Antenna Array Optimization.- 10. Antenna Optimization with Surrogates and Adjoint Sensitivities.- 11. Simulation-Based Multi-Objective Antenna Optimization with Surrogate Models.- 12. Practical Aspects of Surrogate-Based Antenna Design: Selecting Model Fidelity.- 13. Discussion and Recommendations.