Anticancer Activity in Heterocyclic Organic Structures (eBook, ePUB)
A Pathway to Novel Drug Development Part 1
Alle Infos zum eBook verschenken
Anticancer Activity in Heterocyclic Organic Structures (eBook, ePUB)
A Pathway to Novel Drug Development Part 1
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This new volume in New Directions in Organic & Biological Chemistry, explores the development of cancer therapeutics, focusing on molecular chemistry and advanced drug design approaches. Written by experts in theoretical chemistry and molecular chemistry, they bridge the gap between theoretical chemistry, molecular biology, and drug development. In Part I, they focus on the fundamental properties of heterocyclic compounds and innovative methodologies being employed to enhance therapeutic potential. By exploring various classes of heterocyclic compounds and diverse anticancer mechanisms, this…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.42MB
Larbi El MchichiAnticancer Activity in Heterocyclic Organic Structures (eBook, PDF)146,95 €
Studies in Natural Products Chemistry (eBook, ePUB)164,95 €
Nina DragicevicInvasomes as Drug Nanocarriers for Innovative Pharmaceutical Dosage Forms (eBook, ePUB)19,95 €
Mehdi BoroujerdiHandbook of Pharmacokinetics and Toxicokinetics (eBook, ePUB)42,95 €
Alex AvdeefPredicting Solubility of New Drugs (eBook, ePUB)245,95 €
Modern Medicines from Plants (eBook, ePUB)28,95 €
Heterocyclic Anticancer Agents (eBook, ePUB)174,95 €-
-
-
- Provides an overview of computational approaches used in drug discovery, including molecular docking, QSAR, and virtual screening
- Focuses on the theoretical and practical aspects of these techniques, with applications across various therapeutic areas, including cancer
- Addresses the challenges in translating scientific research into effective treatments, offering insights into overcoming common obstacles in the development process
- These compounds represent a significant opportunity for the pharmaceutical industry to provide more effective and tailored cancer treatments, further driving market growth
- The breadth of the market for heterocyclic anticancer agents is vast and continues to expand as scientific advancements uncover new therapeutic targets
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 180
- Erscheinungstermin: 23. Dezember 2025
- Englisch
- ISBN-13: 9781040436691
- Artikelnr.: 76006513
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 180
- Erscheinungstermin: 23. Dezember 2025
- Englisch
- ISBN-13: 9781040436691
- Artikelnr.: 76006513
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
In his research, Dr. EL Mchichi explores innovative computational approaches to the design of novel therapeutic agents, particularly anticancer compounds, utilizing techniques like 3D-QSAR, drug-likeness assessment, ADMET prediction, and molecular docking simulations.
In addition to his research, he is a first-grade certified teacher of physics and chemistry at the secondary education level, where he strives to inspire his students with a passion for science and research.
Dr. EL Mchichi has authored several peer-reviewed publications in international journals, including work on the design of pyrazole derivatives as anticancer agents and the discovery of a new isatin scaffold for BCR-ABL tyrosine kinase inhibitors.
His research aims to contribute to the advancement of cutting-edge cancer therapies through the integration of computational methods and pharmaceutical science.
-
interactions. 72 3.4. Cation-
interactions. 72 3.5.
interactions. 72 3.6. Van der Waals interactions. 73 3.7. Hydrophobic effect 73 4. Molecular docking tools 73 4.1. Preparation and selection of receptors. 73 4.2. Main docking software. 74 5. Evaluation of docking methods 75 5.1. Re-docking. 75 5.2. Root Mean Square Deviation (RMSD) 75 X. Conclusion. 78 XI. References 79 Experimental Part 84 Chapter 03 : Study of the anticancer activity of heterocyclic organic molecules using the 2D QSAR method.. 85 Application 1: QSAR Study of New Compounds Based on 1, 2, 4-triazole as Potential Anticancer Agents 86 I..... Introduction. 88 II.... Material and Methods 88 1. Experimental Data. 88 2. Calculation of molecular descriptors. 90 3. Statistical analysis 90 III.. Results and Discussion. 92 1. Principal Components Analysis (PCA) 92 2. Multiple linear regressions (MLR) 96 3. Multiple nonlinear regressions (MNLR) 96 4. External validation. 97 5. Artificial Neural networks (ANN) 98 IV.. Conclusion. 100 V.... References 101 Chapter 04 : Study of the anticancer activity of heterocyclic organic molecules using the 3D-QSAR and Molecular Docking methods 107 Application 2 :3D-QSAR Study of the Chalcone Derivatives as Anti-cancer Agents 108 I..... Introduction. 110 II.... Materials and Methods 111 1. Computer simulations 111 2. Data set 111 3. Molecular Modeling. 113 4. Molecular Alignment 113 5. CoMFA and CoMSIA studies 114 6. Partial least square analysis 114 7. Validation of the models 114 8. Y-randomization test 115 9. Model acceptability criteria. 115 10. Lipinski's Rule and ADMET Prediction. 115 III.. Results and Discussion. 116 1. CoMFA statistical results 116 2. CoMSIA Statistical Results 116 3. Analysis of CoMFA and CoMSIA contour maps 119 3.1. CoMFA contour map. 119 3.2. CoMSIA contour map. 121 4. Y-randomization test 123 5. Design for new chalcone as anticancer agents 124 6. Lipinski's Rule and ADMET Prediction. 126 IV.. Conclusion. 127 V.... References 130 Application 3: In Silico Design of Novel Pyrazole derivatives containing thiourea skeleton as anti-cancer agents using: 3D QSAR, Drug-Likeness studies, ADMET Prediction and Molecular Docking. 131 I..... Introduction. 133 II.... Material and Methods 134 1. Computer simulations 134 1.1. Data set 134 1.2. Molecular alignment 137 2. CoMFA and CoMSIA studies 138 3. Partial least square analysis 138 4. Validation of the models 139 5. Y-randomization test 139 6. Model acceptability criteria. 139 7. Drug Likeness and ADMET Prediction. 140 8. Molecular Docking Study. 140 III.. Results and discussion. 140 1. Molecular alignment 140 2. CoMFA statistical results 141 3. CoMSIA Statistical Results 141 4. Y
randomization. 143 5. Contour analysis 144 5.1. CoMFA Contour map. 144 5.2. CoMSIA Contour maps 146 6. Design for new Pyrazole as anticancer agents 148 7. Drug-likeness studies 151 8. ADMET prediction. 153 9. Molecular docking study. 154 IV.. Conclusion. 156 V.... References 157 Application 4: Molecular Docking, Drug likeness Studies and ADMET prediction of Flavonoids as Platelet-Activating Factor (PAF) Receptor Binding. 161 I..... Introuduction. 163 II.... Material and Methods 165 1. Data collection. 165 1.1. Ligands 165 1.2. Receptor 165 2. Molecular Docking. 166 3. Docking validation protocol 167 4. Drug-likeness studies 167 5. ADMET prediction. 167 III.. Results and Discussion. 168 1. Molecular Docking. 168 2. Docking validation protocol 172 3. Drug-likeness studies 172 IV... Conclusion. 174 V.... References 174 General Conclusion. 175
-
interactions. 72 3.4. Cation-
interactions. 72 3.5.
interactions. 72 3.6. Van der Waals interactions. 73 3.7. Hydrophobic effect 73 4. Molecular docking tools 73 4.1. Preparation and selection of receptors. 73 4.2. Main docking software. 74 5. Evaluation of docking methods 75 5.1. Re-docking. 75 5.2. Root Mean Square Deviation (RMSD) 75 X. Conclusion. 78 XI. References 79 Experimental Part 84 Chapter 03 : Study of the anticancer activity of heterocyclic organic molecules using the 2D QSAR method.. 85 Application 1: QSAR Study of New Compounds Based on 1, 2, 4-triazole as Potential Anticancer Agents 86 I..... Introduction. 88 II.... Material and Methods 88 1. Experimental Data. 88 2. Calculation of molecular descriptors. 90 3. Statistical analysis 90 III.. Results and Discussion. 92 1. Principal Components Analysis (PCA) 92 2. Multiple linear regressions (MLR) 96 3. Multiple nonlinear regressions (MNLR) 96 4. External validation. 97 5. Artificial Neural networks (ANN) 98 IV.. Conclusion. 100 V.... References 101 Chapter 04 : Study of the anticancer activity of heterocyclic organic molecules using the 3D-QSAR and Molecular Docking methods 107 Application 2 :3D-QSAR Study of the Chalcone Derivatives as Anti-cancer Agents 108 I..... Introduction. 110 II.... Materials and Methods 111 1. Computer simulations 111 2. Data set 111 3. Molecular Modeling. 113 4. Molecular Alignment 113 5. CoMFA and CoMSIA studies 114 6. Partial least square analysis 114 7. Validation of the models 114 8. Y-randomization test 115 9. Model acceptability criteria. 115 10. Lipinski's Rule and ADMET Prediction. 115 III.. Results and Discussion. 116 1. CoMFA statistical results 116 2. CoMSIA Statistical Results 116 3. Analysis of CoMFA and CoMSIA contour maps 119 3.1. CoMFA contour map. 119 3.2. CoMSIA contour map. 121 4. Y-randomization test 123 5. Design for new chalcone as anticancer agents 124 6. Lipinski's Rule and ADMET Prediction. 126 IV.. Conclusion. 127 V.... References 130 Application 3: In Silico Design of Novel Pyrazole derivatives containing thiourea skeleton as anti-cancer agents using: 3D QSAR, Drug-Likeness studies, ADMET Prediction and Molecular Docking. 131 I..... Introduction. 133 II.... Material and Methods 134 1. Computer simulations 134 1.1. Data set 134 1.2. Molecular alignment 137 2. CoMFA and CoMSIA studies 138 3. Partial least square analysis 138 4. Validation of the models 139 5. Y-randomization test 139 6. Model acceptability criteria. 139 7. Drug Likeness and ADMET Prediction. 140 8. Molecular Docking Study. 140 III.. Results and discussion. 140 1. Molecular alignment 140 2. CoMFA statistical results 141 3. CoMSIA Statistical Results 141 4. Y
randomization. 143 5. Contour analysis 144 5.1. CoMFA Contour map. 144 5.2. CoMSIA Contour maps 146 6. Design for new Pyrazole as anticancer agents 148 7. Drug-likeness studies 151 8. ADMET prediction. 153 9. Molecular docking study. 154 IV.. Conclusion. 156 V.... References 157 Application 4: Molecular Docking, Drug likeness Studies and ADMET prediction of Flavonoids as Platelet-Activating Factor (PAF) Receptor Binding. 161 I..... Introuduction. 163 II.... Material and Methods 165 1. Data collection. 165 1.1. Ligands 165 1.2. Receptor 165 2. Molecular Docking. 166 3. Docking validation protocol 167 4. Drug-likeness studies 167 5. ADMET prediction. 167 III.. Results and Discussion. 168 1. Molecular Docking. 168 2. Docking validation protocol 172 3. Drug-likeness studies 172 IV... Conclusion. 174 V.... References 174 General Conclusion. 175







