Jacob Cohen, Patricia Cohen, Stephen G. West, Leona S. Aiken
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (eBook, ePUB)
55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
55,95 €
Als Download kaufen
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Jacob Cohen, Patricia Cohen, Stephen G. West, Leona S. Aiken
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Classic text on applied multiple regression considered the bible among graduate students and researchers.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 16.9MB
Andere Kunden interessierten sich auch für
- Keenan A. PituchApplied Multivariate Statistics for the Social Sciences (eBook, ePUB)119,95 €
- Brady T. WestApplied Survey Data Analysis (eBook, ePUB)79,95 €
- Debbie L. Hahs-VaughnApplied Multivariate Statistical Concepts (eBook, ePUB)135,95 €
- Jocelyn E. BolinRegression Analysis in R (eBook, ePUB)63,95 €
- Longitudinal Models in the Behavioral and Related Sciences (eBook, ePUB)61,95 €
- Advanced Structural Equation Modeling (eBook, ePUB)51,95 €
- Norman H. AndersonEmpirical Direction in Design and Analysis (eBook, ePUB)52,95 €
-
-
-
Classic text on applied multiple regression considered the bible among graduate students and researchers.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 536
- Erscheinungstermin: 17. Juni 2013
- Englisch
- ISBN-13: 9781134801015
- Artikelnr.: 42683532
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 536
- Erscheinungstermin: 17. Juni 2013
- Englisch
- ISBN-13: 9781134801015
- Artikelnr.: 42683532
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jacob Cohen (Author) , Patricia Cohen (Author) , Stephen G. West (Author) , Leona S. Aiken (Author)
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.