Artificial Intelligence and Machine Learning Applications for Sustainable Development (eBook, PDF)
Redaktion: Singh, A. J.; Kumar, Sandeep; Upadhyay, Subho; Sharma, Sumit; Kumar, Sanjay; Gupta, Nikita
Alle Infos zum eBook verschenken
Artificial Intelligence and Machine Learning Applications for Sustainable Development (eBook, PDF)
Redaktion: Singh, A. J.; Kumar, Sandeep; Upadhyay, Subho; Sharma, Sumit; Kumar, Sanjay; Gupta, Nikita
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book highlights how technologies including artificial intelligence and machine learning are transforming renewable energy technologies and enabling the development of new solutions. It further discusses how smart technologies are employed to optimize energy production and storage, enhance energy efficiency, and improve the overall sustainability of energy systems.
This book:
Discusses artificial intelligence-based techniques, namely, neural networks, fuzzy expert systems, optimization techniques, and operational research | Showcases the importance of artificial intelligence and…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Artificial Intelligence and Machine Learning Applications for Sustainable Development (eBook, ePUB)160,95 €
- Multi-objective Optimization Techniques (eBook, PDF)110,95 €
- Artificial Intelligence Revolutionizing Cancer Care (eBook, PDF)53,95 €
- Next Generation Mechanisms for Data Encryption (eBook, PDF)50,95 €
- Cloud and Fog Optimization-based Solutions for Sustainable Developments (eBook, PDF)53,95 €
- Big Data Analytics and Intelligent Applications for Smart and Secure Healthcare Services (eBook, PDF)50,95 €
- Altaf Q. H. BadarEvolutionary Optimization Algorithms (eBook, PDF)45,95 €
-
-
-
This book:
- Discusses artificial intelligence-based techniques, namely, neural networks, fuzzy expert systems, optimization techniques, and operational research
- Showcases the importance of artificial intelligence and machine learning in the energy market, demand analysis, and forecasting of renewable energy applications
- Illustrates strategies for sustainable development using artificial intelligence and machine learning applications
- Presents applications of artificial intelligence in the domain of electronics transformation and development, smart cities, and renewable energy utilization
- Highlights the role of artificial intelligence in solving problems such as image and signal processing, smart weather monitoring, smart farming, and distributed energy sources
It is primarily written for senior undergraduates, graduate students, and academic researchers in diverse fields, including electrical, electronics and communications, energy, and environmental engineering.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 370
- Erscheinungstermin: 28. Januar 2025
- Englisch
- ISBN-13: 9781040273586
- Artikelnr.: 72646584
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 370
- Erscheinungstermin: 28. Januar 2025
- Englisch
- ISBN-13: 9781040273586
- Artikelnr.: 72646584
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Intelligence and Machine Learning Modelling Techniques. 2. Sustainable
Development Using Renewable Energy Sources: Artificial Intelligence &
Machine Learning contribution. 3. Artificial Intelligence as a tool for
building more resilient cities in the climate change era: A systematic
literature review. 4. Achieving Sustainable Development Goals through
Knowledge Management in Industry 4.0: A Critical Review from the
Perspective of Bangladesh. 5. Harmonizing Innovation and Accountability:
The Intersection of Artificial Intelligence and Machine Learning in
Sustainable Development. 6. A New Innovative Methodology for Photovoltaic
Integration on Rooftops for Cost Reduction and Reduced Grid Dependency. 7.
A Residual Deep Neural Network Based Non-Invasive system for Tomato Crop
Health Monitoring, Disease Type Identification and Remedial Measures. 8.
Advancements in Healthcare: Machine Learning Applications for quick Disease
Diagnostics and Individualized Treatment. 9. IoT Based Home Automation
using NODEMCU. 10. Stabilization and Synchronization of Chen-Lee Chaotic
System using Sliding Mode Control Approach. 11. Application of Machine
Learning Models for Power Systems Security Assessment. 12. Machine learning
and deep learning models for effective forecasting of renewable energy
generation. 13. Unlocking Predictive Potential: An Innovative Approach for
Accuracy Enhancement in Software Effort Estimation. 14. Deep Learning-based
Approach to Predict Software Faults
Intelligence and Machine Learning Modelling Techniques. 2. Sustainable
Development Using Renewable Energy Sources: Artificial Intelligence &
Machine Learning contribution. 3. Artificial Intelligence as a tool for
building more resilient cities in the climate change era: A systematic
literature review. 4. Achieving Sustainable Development Goals through
Knowledge Management in Industry 4.0: A Critical Review from the
Perspective of Bangladesh. 5. Harmonizing Innovation and Accountability:
The Intersection of Artificial Intelligence and Machine Learning in
Sustainable Development. 6. A New Innovative Methodology for Photovoltaic
Integration on Rooftops for Cost Reduction and Reduced Grid Dependency. 7.
A Residual Deep Neural Network Based Non-Invasive system for Tomato Crop
Health Monitoring, Disease Type Identification and Remedial Measures. 8.
Advancements in Healthcare: Machine Learning Applications for quick Disease
Diagnostics and Individualized Treatment. 9. IoT Based Home Automation
using NODEMCU. 10. Stabilization and Synchronization of Chen-Lee Chaotic
System using Sliding Mode Control Approach. 11. Application of Machine
Learning Models for Power Systems Security Assessment. 12. Machine learning
and deep learning models for effective forecasting of renewable energy
generation. 13. Unlocking Predictive Potential: An Innovative Approach for
Accuracy Enhancement in Software Effort Estimation. 14. Deep Learning-based
Approach to Predict Software Faults