Mikhail V. FedoryukLinear Ordinary Differential Equations
Asymptotic Analysis (eBook, PDF)
Linear Ordinary Differential Equations
Übersetzer: Rodick, A.
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Mikhail V. FedoryukLinear Ordinary Differential Equations
Asymptotic Analysis (eBook, PDF)
Linear Ordinary Differential Equations
Übersetzer: Rodick, A.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Fedoryuk's book is a unique reference for the asymptotic theory of ordinary differential equations given all the important formulae of this field. It is also an indispensable guide to the literature up to the most recent research.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 42.37MB
Andere Kunden interessierten sich auch für
Differential Equations and Mathematical Physics (eBook, PDF)35,95 €
Numerical Integration of Differential Equations and Large Linear Systems (eBook, PDF)35,95 €
Inverse Problems in Wave Propagation (eBook, PDF)40,95 €
Partial Differential Equations and Calculus of Variations (eBook, PDF)35,95 €
Calvin H. WilcoxScattering Theory for Diffraction Gratings (eBook, PDF)40,95 €
Spectral and Scattering Theory (eBook, PDF)72,95 €
P. A. LagerstromMatched Asymptotic Expansions (eBook, PDF)72,95 €-
-
-
Fedoryuk's book is a unique reference for the asymptotic theory of ordinary differential equations given all the important formulae of this field. It is also an indispensable guide to the literature up to the most recent research.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 363
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642580161
- Artikelnr.: 53086056
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 363
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642580161
- Artikelnr.: 53086056
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. The Analytic Theory of Differential Equations.- 1. Analyticity of the Solutions of a System of Ordinary Differential Equations.- 2. Regular Singular Points.- 3. Irregular Singular Points.- 2. Second-Order Equations on the Real Line.- 1. Transformations of Second-Order Equations.- 2. WKB-Bounds.- 3. Asymptotic Behaviour of Solutions of a Second-Order Equation for Large Values of the Parameter.- 4. Systems of Two Equations Containing a Large Parameter.- 5. Systems of Equations Close to Diagonal Form.- 6. Asymptotic Behaviour of the Solutions for Large Values of the Argument.- 7. Dual Asymptotic Behaviour.- 8. Counterexamples.- 9. Roots of Constant Multiplicity.- 10. Problems on Eigenvalues.- 11. A Problem on Scattering.- 3. Second-Order Equations in the Complex Plane.- 1. Stokes Lines and the Domains Bounded by them.- 2. WKB-Bounds in the Complex Plane.- 3. Equations with Polynomial Coefficients. Asymptotic Behaviour of a Solution in the Large.- 4. Equations with Entire or Meromorphic Coefficients.- 5. Asymptotic Behaviour of the Eigenvalues of the Operator -d2 / dx2 + ?2q(x). Self-Adjoint Problems.- 6. Asymptotic Behaviour of the Discrete Spectrum of the Operator -y? + ?2q(x)y. Non-Self-Adjoint Problems.- 7. The Eigenvalue Problem with Regular Singular Points.- 8. Quasiclassical Approximation in Scattering Problems.- 9. Sturm-Liouville Equations with Periodic Potential.- 4. Second-Order Equations with Turning Points.- 1. Simple Turning Points. The Real Case.- 2. A Simple Turning Point. The Complex Case.- 3. Some Standard Equations.- 4. Multiple and Fractional Turning Points.- 5. The Fusion of a Turning Point and Regular Singular Point.- 6. Multiple Turning Points. The ComplexCase.- 7. Two Close Turning Points.- 8. Fusion of Several Turning Points.- 5. nth-Order Equations and Systems.- 1. Equations and Systems on a Finite Interval.- 2. Systems of Equations on a Finite Interval.- 3. Equations on an Infinite Interval.- 4. Systems of Equations on an Infinite Interval.- 5. Equations and Systems in the Complex Plane.- 6. Turning Points.- 7. A Problem on Scattering, Adiabatic Invariants and a Problem on Eigenvalues.- 8. Examples.- References.
1. The Analytic Theory of Differential Equations.- 1. Analyticity of the Solutions of a System of Ordinary Differential Equations.- 2. Regular Singular Points.- 3. Irregular Singular Points.- 2. Second-Order Equations on the Real Line.- 1. Transformations of Second-Order Equations.- 2. WKB-Bounds.- 3. Asymptotic Behaviour of Solutions of a Second-Order Equation for Large Values of the Parameter.- 4. Systems of Two Equations Containing a Large Parameter.- 5. Systems of Equations Close to Diagonal Form.- 6. Asymptotic Behaviour of the Solutions for Large Values of the Argument.- 7. Dual Asymptotic Behaviour.- 8. Counterexamples.- 9. Roots of Constant Multiplicity.- 10. Problems on Eigenvalues.- 11. A Problem on Scattering.- 3. Second-Order Equations in the Complex Plane.- 1. Stokes Lines and the Domains Bounded by them.- 2. WKB-Bounds in the Complex Plane.- 3. Equations with Polynomial Coefficients. Asymptotic Behaviour of a Solution in the Large.- 4. Equations with Entire or Meromorphic Coefficients.- 5. Asymptotic Behaviour of the Eigenvalues of the Operator -d2 / dx2 + ?2q(x). Self-Adjoint Problems.- 6. Asymptotic Behaviour of the Discrete Spectrum of the Operator -y? + ?2q(x)y. Non-Self-Adjoint Problems.- 7. The Eigenvalue Problem with Regular Singular Points.- 8. Quasiclassical Approximation in Scattering Problems.- 9. Sturm-Liouville Equations with Periodic Potential.- 4. Second-Order Equations with Turning Points.- 1. Simple Turning Points. The Real Case.- 2. A Simple Turning Point. The Complex Case.- 3. Some Standard Equations.- 4. Multiple and Fractional Turning Points.- 5. The Fusion of a Turning Point and Regular Singular Point.- 6. Multiple Turning Points. The ComplexCase.- 7. Two Close Turning Points.- 8. Fusion of Several Turning Points.- 5. nth-Order Equations and Systems.- 1. Equations and Systems on a Finite Interval.- 2. Systems of Equations on a Finite Interval.- 3. Equations on an Infinite Interval.- 4. Systems of Equations on an Infinite Interval.- 5. Equations and Systems in the Complex Plane.- 6. Turning Points.- 7. A Problem on Scattering, Adiabatic Invariants and a Problem on Eigenvalues.- 8. Examples.- References.







