Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The top-performing X-ray and gamma ray sources are synchrotrons and Free Electron Lasers, which require large investment. Consequently, more affordable and accessible platforms are required for research and applications based on X-rays and gamma rays. CBS is a subset of Thomson and Compton scattering and is the mechanism through which high energy electrons interacting with low energy photons transfer part of their energy to the photons. Accordingly, an infrared photon can e.g. be "transformed" into an X-ray or gamma ray, in a CBS process. Monochromatic and ultrashort X-ray and gamma ray…mehr
The top-performing X-ray and gamma ray sources are synchrotrons and Free Electron Lasers, which require large investment. Consequently, more affordable and accessible platforms are required for research and applications based on X-rays and gamma rays. CBS is a subset of Thomson and Compton scattering and is the mechanism through which high energy electrons interacting with low energy photons transfer part of their energy to the photons. Accordingly, an infrared photon can e.g. be "transformed" into an X-ray or gamma ray, in a CBS process. Monochromatic and ultrashort X-ray and gamma ray sources are challenging to make; however, CBS provides a compact and accessible platform for this purpose.
Aimed at those entering the field for the first time, this first volume provides a background in classical electromagnetism and relativity to facilitate the understanding of Thomson and Compton particle scattering. The general scattering theories are presented, along with laser and electron beam transport and optics. This first volume should equip the reader with the necessary background and insight to understand more advanced topics in Volume 2.
Key Features
Offers a self-contained overview of pulsed X-rays sources based on compact lasers
Provides a detailed presentation of theory and applications targeted at newcomers to the field
Demonstrates a thorough discussion on current performance limits
Works as both a study manual for students or a reference text for researchers
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr Alessandro Curcio obtained a Ph.D. at the School of Accelerator Physics at the University of Rome La Sapienza, before winning a Research Fellowship at the CERN Linear Accelerator for Research. Afterwards, he joined the National Polish Synchrotron SOLARIS as Section Leader in beam diagnostics and instrumentation. Later, he has been Senior Scientist at CLPU and, currently, he is Senior Scientist at the Italian National Institute for Nuclear Physics (INFN). His research interests have always been particle acceleration, innovative radiation sources and particle-matter interactions for applications.
Giuseppe Dattoli is an ENEA Researcher and has been involved in different research projects, including high-energy accelerators, free electron lasers, and applied mathematics networks since 1979. Dr Dattoli has taught in Italian and universities overseas and has received the FEL Prize Award for his outstanding achievements in the field.
Emanuele Di Palma received the Laurea degree in mathematics from La Sapienza University of Rome Italy, in 1996, a master's degree in 'Fusion Energy: Science and Engineering' from Tor Vergata University of Rome Italy, in 2013 and the PhD degree in 'Fusion Science and Engineering' from the University of Padova Italy, in 2018. His research interests are in the fields of physics and applications of intense electron beams, computer-aided design and development of CARM device for various novel application as in-space solar energy harvesting, in fusion energy for high-field Tokamaks and in biomedical applications to develop compact device for nuclear diagnostics.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826