63,95 €
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
63,95 €
63,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
Als Download kaufen
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
Jetzt verschenken
63,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
  • Format: ePub

Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-wor

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 1.9MB
Produktbeschreibung
Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-wor

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.

Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong.

Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.