72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
Jetzt verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
  • Format: PDF

Nominated as an outstanding Ph.D. thesis by Harvard University, Massachusetts, USA Describes how nanoelectronics that mimic biomaterials can be seamlessly integrated with living systems Introduces techniques for constructing half-machine, half-living systems, which is considered the beginning of the cyborg era Includes the first realization of "neural lace" technique once described by science fiction "Culture Series"

Produktbeschreibung
Nominated as an outstanding Ph.D. thesis by Harvard University, Massachusetts, USA
Describes how nanoelectronics that mimic biomaterials can be seamlessly integrated with living systems
Introduces techniques for constructing half-machine, half-living systems, which is considered the beginning of the cyborg era
Includes the first realization of "neural lace" technique once described by science fiction "Culture Series"

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Jia Liu received his Ph.D. degree in Chemistry from Harvard University in 2014. His Ph.D. research with Prof. Charles M. Lieber included the fundamental studies of high performance silicon nanowire field-effect transistors and their applications in three-dimensional soft nanoelectronics, regenerative medicine, neuroscience and neuroengineering. He is now working as postdoctoral fellow with Profs. Zhenan Bao, Karl Deisseroth and Anson Lee at Stanford University to develop soft electronic systems for wearable technology, patient-specific cardiac diagnosis and genetically-targeted brain-machine interface.