51,95 €
51,95 €
inkl. MwSt.
Erscheint vor. 31.07.25
payback
26 °P sammeln
51,95 €
51,95 €
inkl. MwSt.
Erscheint vor. 31.07.25

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
51,95 €
inkl. MwSt.
Erscheint vor. 31.07.25
payback
26 °P sammeln
Jetzt verschenken
51,95 €
inkl. MwSt.
Erscheint vor. 31.07.25

Alle Infos zum eBook verschenken
payback
26 °P sammeln

Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
  • Format: PDF

This book allows readers to take a slow and steady approach to understanding Python code, explaining concepts, connecting programming with real-life examples, writing Python programs, and completing case studies. For absolute beginners with no prior programming experience, and individuals with busy schedules or limited time for studying.

Produktbeschreibung
This book allows readers to take a slow and steady approach to understanding Python code, explaining concepts, connecting programming with real-life examples, writing Python programs, and completing case studies. For absolute beginners with no prior programming experience, and individuals with busy schedules or limited time for studying.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Di Wu is an Assistant Professor of Finance, Information Systems, and Economics department of Business School, Lehman College. He obtained a Ph.D. in Computer Science from the Graduate Center, CUNY. Dr. Wu's research interests are 1) Temporal extensions to RDF and semantic web, 2) Applied Data Science, and 3) Experiential Learning and Pedagogy in business education. Dr.Wu developed and taught courses including Strategic Management, Databases, Business Statistics, Management Decision Making, Programming Languages (C++, Java, and Python), Data Structures and Algorithms, Data Mining, Big Data, and Machine Learning.