72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
Jetzt verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
  • Format: PDF

Bayesian approaches to data analysis sometimes offer important advantages over classical methods. This collection of papers from a workshop on Bayesian statistics discuss important research problems and show the advantages of a Bayesian approach.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 52.55MB
Produktbeschreibung
Bayesian approaches to data analysis sometimes offer important advantages over classical methods. This collection of papers from a workshop on Bayesian statistics discuss important research problems and show the advantages of a Bayesian approach.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Constantine Gatsonis, Brown University, Providence, RI, USA / Alicia Carriquiry, Iowa State University, Ames, IA, USA / Andrew Gelman, Columbia University, New York, NY, USA / D. Higdon, Duke University, Durham, NC, USA
Rezensionen
From the reviews:

TECHNOMETRICS

"...well written and can be appreciated by those with little biology background...In general, I found many of the papers collected in this book interesting...readers who are interested in applying Bayesian analysis in real case studies may find this book useful. One might consider using this book as supplementary material in graduate-level seminar courses on Bayesian data analysis."

Journal of the American Statistical Association, June 2004

"The volume as a whole illustrates the range of models that can now be fitted following the Markov chain Monte Carlo revolution, assess the behavior of posterior summaries under model misspecifications."