Hans-Peter Blossfeld, Götz Rohwer, Gwendolin J. Blossfeld
Causal Analysis with Event History Data Using Stata (eBook, PDF)
54,95 €
54,95 €
inkl. MwSt.
Erscheint vor. 28.07.25
27 °P sammeln
54,95 €
Als Download kaufen
54,95 €
inkl. MwSt.
Erscheint vor. 28.07.25
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,95 €
inkl. MwSt.
Erscheint vor. 28.07.25
Alle Infos zum eBook verschenken
27 °P sammeln
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Hans-Peter Blossfeld, Götz Rohwer, Gwendolin J. Blossfeld
Causal Analysis with Event History Data Using Stata (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
It is an invaluable resource for both novice and experienced researchers from sociology, economics, political science, education, psychology, demography, epidemiology, management research and organizational studies, as well as medicine and clinical applications) who need an introductory text- book on continuous-time event history analysis.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.68MB
Andere Kunden interessierten sich auch für
- Hans-Peter BlossfeldCausal Analysis with Event History Data Using Stata (eBook, ePUB)54,95 €
- Hans-Peter BlossfeldEvent History Analysis With Stata (eBook, PDF)50,95 €
- Ronald H HeckMultilevel Modeling of Categorical Outcomes Using IBM SPSS (eBook, PDF)50,95 €
- Geoff CummingIntroduction to the New Statistics (eBook, PDF)69,95 €
- Barbara M. ByrneStructural Equation Modeling with Mplus (eBook, PDF)56,95 €
- Lisa L. HarlowThe Essence of Multivariate Thinking (eBook, PDF)55,95 €
- Chaitra H. NagarajaMeasuring Society (eBook, PDF)27,95 €
-
-
-
It is an invaluable resource for both novice and experienced researchers from sociology, economics, political science, education, psychology, demography, epidemiology, management research and organizational studies, as well as medicine and clinical applications) who need an introductory text- book on continuous-time event history analysis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 248
- Erscheinungstermin: 28. Juli 2025
- Englisch
- ISBN-13: 9781040387115
- Artikelnr.: 74335555
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 248
- Erscheinungstermin: 28. Juli 2025
- Englisch
- ISBN-13: 9781040387115
- Artikelnr.: 74335555
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Hans-Peter Blossfeld, Prof., Dr. rer. pol. Dr. h. c., has been Emeritus of Excellence at the Graduate Centre Trimberg Research Academy (TRAc) at the University of Bamberg in Germany since April 2020. He held the Chair of Sociology I at the Faculty of Social Sciences, Economics and Business Administration at the University of Bamberg and was Professor of Sociology at the European University Institute in Florence, Italy.
Götz Rohwer was Professor Emeritus of Methods of Social Research and Statistics at Ruhr-University Bochum in Germany. He passed away in March 2021.
Gwendolin J. Blossfeld is a Postdoc at the Faculty of Social Sciences, Economics and Business Administration at the University of Bamberg in Germany.
Götz Rohwer was Professor Emeritus of Methods of Social Research and Statistics at Ruhr-University Bochum in Germany. He passed away in March 2021.
Gwendolin J. Blossfeld is a Postdoc at the Faculty of Social Sciences, Economics and Business Administration at the University of Bamberg in Germany.
Start v
Preface
1 Introduction
1.1 Causal Modeling and Observation Plans
1.1.1 Cross-Sectional Data
1.1.2 Panel Data
1.1.3 Event History Data
1.2 Event History Analysis and Causal Modeling
1.2.1 Causal Explanations
1.2.2 Transition Rate Models
2 Event History Data Structures
2.1 Basic Terminology
2.2 Event History Data Organization
3 Nonparametric Descriptive Methods
3.1 Life Table Method
3.2 Product-Limit Estimation
3.3 Comparing Survivor Functions
4 Exponential Transition Rate Models
4.1 The Basic Exponential Model
4.1.1 Maximum Likelihood Estimation
4.1.2 Models without Covariates
4.1.3 Time-Constant Covariates
4.2 Models with Multiple Destinations
4.3 Models with Multiple Episodes
5 Piecewise Constant Exponential Models
5.1 The Basic Model
5.2 Models without Covariates
5.3 Models with Proportional Covariate Effects
5.4 Models with Period-Specific Effects
6 Exponential Models with Time-Dependent Covariates
6.1 Parallel and Interdependent Processes
6.2 Interdependent Processes: The System Approach
6.3 Interdependent Processes: The Causal Approach
6.4 Episode Splitting with Qualitative Covariates
6.5 Episode Splitting with Quantitative Covariates
6.6 Application Examples
7 Parametric Models of Time Dependence
7.1 Interpretation of Time Dependence
7.2 Gompertz Models
7.3 Weibull Models
7.4 Log-Logistic Models
7.5 Log-Normal Models
8 Methods for Testing Parametric Assumptions
8.1 Simple Graphical Methods
8.2 Pseudoresiduals
9 Semiparametric Transition Rate Models
9.1 Partial Likelihood Estimation
9.2 Time-Dependent Covariates
9.3 The Proportionality Assumption
9.4 Stratification with Covariates and for Multiepisode Data
9.5 Baseline Rates and Survivor Functions
9.6 Application Example
10 Problems of Model Specification
10.1 Unobserved Heterogeneity
10.2 Models with a Mixture Distribution
10.2.1 Models with a Gamma Mixture
10.2.2 Exponential Models with a Gamma Mixture
10.2.3 Weibull Models with a Gamma Mixture
10.2.4 Random Effects for Multiepisode Data
10.3 Discussion
11 Sequence Analysis
Brendan Halpin
11.1 What is Sequence Analysis?
11.2 Defining Distances
11.3 Doing Sequence Analysis in Stata
11.4 Unary Summaries
11.5 Intersequence Distance
11.6 What to Do with Sequence Distances?
11.7 Optimal Matching Distance
11.8 Special Topics
11.9 Conclusion
Appendix: Exercises
References
About the Authors
Preface
1 Introduction
1.1 Causal Modeling and Observation Plans
1.1.1 Cross-Sectional Data
1.1.2 Panel Data
1.1.3 Event History Data
1.2 Event History Analysis and Causal Modeling
1.2.1 Causal Explanations
1.2.2 Transition Rate Models
2 Event History Data Structures
2.1 Basic Terminology
2.2 Event History Data Organization
3 Nonparametric Descriptive Methods
3.1 Life Table Method
3.2 Product-Limit Estimation
3.3 Comparing Survivor Functions
4 Exponential Transition Rate Models
4.1 The Basic Exponential Model
4.1.1 Maximum Likelihood Estimation
4.1.2 Models without Covariates
4.1.3 Time-Constant Covariates
4.2 Models with Multiple Destinations
4.3 Models with Multiple Episodes
5 Piecewise Constant Exponential Models
5.1 The Basic Model
5.2 Models without Covariates
5.3 Models with Proportional Covariate Effects
5.4 Models with Period-Specific Effects
6 Exponential Models with Time-Dependent Covariates
6.1 Parallel and Interdependent Processes
6.2 Interdependent Processes: The System Approach
6.3 Interdependent Processes: The Causal Approach
6.4 Episode Splitting with Qualitative Covariates
6.5 Episode Splitting with Quantitative Covariates
6.6 Application Examples
7 Parametric Models of Time Dependence
7.1 Interpretation of Time Dependence
7.2 Gompertz Models
7.3 Weibull Models
7.4 Log-Logistic Models
7.5 Log-Normal Models
8 Methods for Testing Parametric Assumptions
8.1 Simple Graphical Methods
8.2 Pseudoresiduals
9 Semiparametric Transition Rate Models
9.1 Partial Likelihood Estimation
9.2 Time-Dependent Covariates
9.3 The Proportionality Assumption
9.4 Stratification with Covariates and for Multiepisode Data
9.5 Baseline Rates and Survivor Functions
9.6 Application Example
10 Problems of Model Specification
10.1 Unobserved Heterogeneity
10.2 Models with a Mixture Distribution
10.2.1 Models with a Gamma Mixture
10.2.2 Exponential Models with a Gamma Mixture
10.2.3 Weibull Models with a Gamma Mixture
10.2.4 Random Effects for Multiepisode Data
10.3 Discussion
11 Sequence Analysis
Brendan Halpin
11.1 What is Sequence Analysis?
11.2 Defining Distances
11.3 Doing Sequence Analysis in Stata
11.4 Unary Summaries
11.5 Intersequence Distance
11.6 What to Do with Sequence Distances?
11.7 Optimal Matching Distance
11.8 Special Topics
11.9 Conclusion
Appendix: Exercises
References
About the Authors
Start v
Preface
1 Introduction
1.1 Causal Modeling and Observation Plans
1.1.1 Cross-Sectional Data
1.1.2 Panel Data
1.1.3 Event History Data
1.2 Event History Analysis and Causal Modeling
1.2.1 Causal Explanations
1.2.2 Transition Rate Models
2 Event History Data Structures
2.1 Basic Terminology
2.2 Event History Data Organization
3 Nonparametric Descriptive Methods
3.1 Life Table Method
3.2 Product-Limit Estimation
3.3 Comparing Survivor Functions
4 Exponential Transition Rate Models
4.1 The Basic Exponential Model
4.1.1 Maximum Likelihood Estimation
4.1.2 Models without Covariates
4.1.3 Time-Constant Covariates
4.2 Models with Multiple Destinations
4.3 Models with Multiple Episodes
5 Piecewise Constant Exponential Models
5.1 The Basic Model
5.2 Models without Covariates
5.3 Models with Proportional Covariate Effects
5.4 Models with Period-Specific Effects
6 Exponential Models with Time-Dependent Covariates
6.1 Parallel and Interdependent Processes
6.2 Interdependent Processes: The System Approach
6.3 Interdependent Processes: The Causal Approach
6.4 Episode Splitting with Qualitative Covariates
6.5 Episode Splitting with Quantitative Covariates
6.6 Application Examples
7 Parametric Models of Time Dependence
7.1 Interpretation of Time Dependence
7.2 Gompertz Models
7.3 Weibull Models
7.4 Log-Logistic Models
7.5 Log-Normal Models
8 Methods for Testing Parametric Assumptions
8.1 Simple Graphical Methods
8.2 Pseudoresiduals
9 Semiparametric Transition Rate Models
9.1 Partial Likelihood Estimation
9.2 Time-Dependent Covariates
9.3 The Proportionality Assumption
9.4 Stratification with Covariates and for Multiepisode Data
9.5 Baseline Rates and Survivor Functions
9.6 Application Example
10 Problems of Model Specification
10.1 Unobserved Heterogeneity
10.2 Models with a Mixture Distribution
10.2.1 Models with a Gamma Mixture
10.2.2 Exponential Models with a Gamma Mixture
10.2.3 Weibull Models with a Gamma Mixture
10.2.4 Random Effects for Multiepisode Data
10.3 Discussion
11 Sequence Analysis
Brendan Halpin
11.1 What is Sequence Analysis?
11.2 Defining Distances
11.3 Doing Sequence Analysis in Stata
11.4 Unary Summaries
11.5 Intersequence Distance
11.6 What to Do with Sequence Distances?
11.7 Optimal Matching Distance
11.8 Special Topics
11.9 Conclusion
Appendix: Exercises
References
About the Authors
Preface
1 Introduction
1.1 Causal Modeling and Observation Plans
1.1.1 Cross-Sectional Data
1.1.2 Panel Data
1.1.3 Event History Data
1.2 Event History Analysis and Causal Modeling
1.2.1 Causal Explanations
1.2.2 Transition Rate Models
2 Event History Data Structures
2.1 Basic Terminology
2.2 Event History Data Organization
3 Nonparametric Descriptive Methods
3.1 Life Table Method
3.2 Product-Limit Estimation
3.3 Comparing Survivor Functions
4 Exponential Transition Rate Models
4.1 The Basic Exponential Model
4.1.1 Maximum Likelihood Estimation
4.1.2 Models without Covariates
4.1.3 Time-Constant Covariates
4.2 Models with Multiple Destinations
4.3 Models with Multiple Episodes
5 Piecewise Constant Exponential Models
5.1 The Basic Model
5.2 Models without Covariates
5.3 Models with Proportional Covariate Effects
5.4 Models with Period-Specific Effects
6 Exponential Models with Time-Dependent Covariates
6.1 Parallel and Interdependent Processes
6.2 Interdependent Processes: The System Approach
6.3 Interdependent Processes: The Causal Approach
6.4 Episode Splitting with Qualitative Covariates
6.5 Episode Splitting with Quantitative Covariates
6.6 Application Examples
7 Parametric Models of Time Dependence
7.1 Interpretation of Time Dependence
7.2 Gompertz Models
7.3 Weibull Models
7.4 Log-Logistic Models
7.5 Log-Normal Models
8 Methods for Testing Parametric Assumptions
8.1 Simple Graphical Methods
8.2 Pseudoresiduals
9 Semiparametric Transition Rate Models
9.1 Partial Likelihood Estimation
9.2 Time-Dependent Covariates
9.3 The Proportionality Assumption
9.4 Stratification with Covariates and for Multiepisode Data
9.5 Baseline Rates and Survivor Functions
9.6 Application Example
10 Problems of Model Specification
10.1 Unobserved Heterogeneity
10.2 Models with a Mixture Distribution
10.2.1 Models with a Gamma Mixture
10.2.2 Exponential Models with a Gamma Mixture
10.2.3 Weibull Models with a Gamma Mixture
10.2.4 Random Effects for Multiepisode Data
10.3 Discussion
11 Sequence Analysis
Brendan Halpin
11.1 What is Sequence Analysis?
11.2 Defining Distances
11.3 Doing Sequence Analysis in Stata
11.4 Unary Summaries
11.5 Intersequence Distance
11.6 What to Do with Sequence Distances?
11.7 Optimal Matching Distance
11.8 Special Topics
11.9 Conclusion
Appendix: Exercises
References
About the Authors