Fischer
Chaos, Fractals, and Dynamics (eBook, ePUB)
215,95 €
215,95 €
inkl. MwSt.
Sofort per Download lieferbar
108 °P sammeln
215,95 €
Als Download kaufen
215,95 €
inkl. MwSt.
Sofort per Download lieferbar
108 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
215,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
108 °P sammeln
Fischer
Chaos, Fractals, and Dynamics (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book contains eighteen papers, all more-or-less linked to the theory of dynamical systems together with related studies of chaos and fractals. It shows many fractal configurations that were generated by computer calculations of underlying two-dimensional maps.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
FischerChaos, Fractals, and Dynamics (eBook, PDF)215,95 €
Jose Francisco RodriguesMathematical Topics in Fluid Mechanics (eBook, ePUB)60,95 €
Gordon E SwatersIntroduction to Hamiltonian Fluid Dynamics and Stability Theory (eBook, ePUB)63,95 €
Ioannis K. ArgyrosThe Theory and Applications of Iteration Methods (eBook, ePUB)85,95 €
B. VainbergAsymptotic Methods in Equations of Mathematical Physics (eBook, ePUB)215,95 €
James H. LightbournePhysical Mathematics and Nonlinear Partial Differential Equations (eBook, ePUB)215,95 €
G P GaldiRecent Developments in Theoretical Fluid Mechanics (eBook, ePUB)60,95 €-
-
-
This book contains eighteen papers, all more-or-less linked to the theory of dynamical systems together with related studies of chaos and fractals. It shows many fractal configurations that were generated by computer calculations of underlying two-dimensional maps.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 280
- Erscheinungstermin: 25. November 2020
- Englisch
- ISBN-13: 9781000154221
- Artikelnr.: 60507402
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 280
- Erscheinungstermin: 25. November 2020
- Englisch
- ISBN-13: 9781000154221
- Artikelnr.: 60507402
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
P. Fischer
Part I 1. Chaostrophes, Incermittency, and Noise 2. The Outstructure of the
Lorenz Attractor 3. Chaos and Intermittency in an Endocrine System Model 4.
An Index for Chaotic Solutions in Cooperative Peeling 5. Unfoldings of
Degenerate Bifurcations 6. Example of an Axiom a ODE Part II 7. Is There
Chaos Without Noise? 8. Chaostrophes of Forced Van der Pol Systems 9.
Numerical Solution of the Lorenz Equations with Spatial Inhomogeneity 10.
Some Results on Singular Delay-Differential Equations 11. Feigenbaum
Functional Equations as Dynamical Systems 12. The Chaos of Dynamical
Systems 13. On Network Perturbations of Electrical Circuits and Singular
Perturbation of Dynamical Systems 14. On the Dynamics of Iterated Maps III:
The Individual Molecules of the M-Set, Self-Similarity Properties, the
Empirical n2 Rule, and the n2 Conjecture 15. On the Dynamics of Iterated
Maps IV: The Notion of "Normalized Radical" R of the M-Set, and the Fractal
Dimension of the Boundary of R 16. On the Dynamics of Iterated Maps V:
Conjecture That the Boundary of the H-Set Has a Fractal Dimension Equal to
2 17. On the Dynamics of Iterated Maps VI: Conjecture That Certain Julia
Sets Include Smooth Components 18. On the Dynamics of Iterated Maps VII:
Domain-Filling ("Peamo") Sequemces of Fractal Julia Sets, and an Intuitive
Rationale for the Siegel Discs
Lorenz Attractor 3. Chaos and Intermittency in an Endocrine System Model 4.
An Index for Chaotic Solutions in Cooperative Peeling 5. Unfoldings of
Degenerate Bifurcations 6. Example of an Axiom a ODE Part II 7. Is There
Chaos Without Noise? 8. Chaostrophes of Forced Van der Pol Systems 9.
Numerical Solution of the Lorenz Equations with Spatial Inhomogeneity 10.
Some Results on Singular Delay-Differential Equations 11. Feigenbaum
Functional Equations as Dynamical Systems 12. The Chaos of Dynamical
Systems 13. On Network Perturbations of Electrical Circuits and Singular
Perturbation of Dynamical Systems 14. On the Dynamics of Iterated Maps III:
The Individual Molecules of the M-Set, Self-Similarity Properties, the
Empirical n2 Rule, and the n2 Conjecture 15. On the Dynamics of Iterated
Maps IV: The Notion of "Normalized Radical" R of the M-Set, and the Fractal
Dimension of the Boundary of R 16. On the Dynamics of Iterated Maps V:
Conjecture That the Boundary of the H-Set Has a Fractal Dimension Equal to
2 17. On the Dynamics of Iterated Maps VI: Conjecture That Certain Julia
Sets Include Smooth Components 18. On the Dynamics of Iterated Maps VII:
Domain-Filling ("Peamo") Sequemces of Fractal Julia Sets, and an Intuitive
Rationale for the Siegel Discs
Part I 1. Chaostrophes, Incermittency, and Noise 2. The Outstructure of the
Lorenz Attractor 3. Chaos and Intermittency in an Endocrine System Model 4.
An Index for Chaotic Solutions in Cooperative Peeling 5. Unfoldings of
Degenerate Bifurcations 6. Example of an Axiom a ODE Part II 7. Is There
Chaos Without Noise? 8. Chaostrophes of Forced Van der Pol Systems 9.
Numerical Solution of the Lorenz Equations with Spatial Inhomogeneity 10.
Some Results on Singular Delay-Differential Equations 11. Feigenbaum
Functional Equations as Dynamical Systems 12. The Chaos of Dynamical
Systems 13. On Network Perturbations of Electrical Circuits and Singular
Perturbation of Dynamical Systems 14. On the Dynamics of Iterated Maps III:
The Individual Molecules of the M-Set, Self-Similarity Properties, the
Empirical n2 Rule, and the n2 Conjecture 15. On the Dynamics of Iterated
Maps IV: The Notion of "Normalized Radical" R of the M-Set, and the Fractal
Dimension of the Boundary of R 16. On the Dynamics of Iterated Maps V:
Conjecture That the Boundary of the H-Set Has a Fractal Dimension Equal to
2 17. On the Dynamics of Iterated Maps VI: Conjecture That Certain Julia
Sets Include Smooth Components 18. On the Dynamics of Iterated Maps VII:
Domain-Filling ("Peamo") Sequemces of Fractal Julia Sets, and an Intuitive
Rationale for the Siegel Discs
Lorenz Attractor 3. Chaos and Intermittency in an Endocrine System Model 4.
An Index for Chaotic Solutions in Cooperative Peeling 5. Unfoldings of
Degenerate Bifurcations 6. Example of an Axiom a ODE Part II 7. Is There
Chaos Without Noise? 8. Chaostrophes of Forced Van der Pol Systems 9.
Numerical Solution of the Lorenz Equations with Spatial Inhomogeneity 10.
Some Results on Singular Delay-Differential Equations 11. Feigenbaum
Functional Equations as Dynamical Systems 12. The Chaos of Dynamical
Systems 13. On Network Perturbations of Electrical Circuits and Singular
Perturbation of Dynamical Systems 14. On the Dynamics of Iterated Maps III:
The Individual Molecules of the M-Set, Self-Similarity Properties, the
Empirical n2 Rule, and the n2 Conjecture 15. On the Dynamics of Iterated
Maps IV: The Notion of "Normalized Radical" R of the M-Set, and the Fractal
Dimension of the Boundary of R 16. On the Dynamics of Iterated Maps V:
Conjecture That the Boundary of the H-Set Has a Fractal Dimension Equal to
2 17. On the Dynamics of Iterated Maps VI: Conjecture That Certain Julia
Sets Include Smooth Components 18. On the Dynamics of Iterated Maps VII:
Domain-Filling ("Peamo") Sequemces of Fractal Julia Sets, and an Intuitive
Rationale for the Siegel Discs







