Rafael Cubarsi
Chord Transformations in Higher-Dimensional Networks (eBook, ePUB)
165,95 €
165,95 €
inkl. MwSt.
Sofort per Download lieferbar
83 °P sammeln
165,95 €
Als Download kaufen
165,95 €
inkl. MwSt.
Sofort per Download lieferbar
83 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
165,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
83 °P sammeln
Rafael Cubarsi
Chord Transformations in Higher-Dimensional Networks (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Proposes an in-depth formal framework for generalized Tonnetze, takes an algebraic approach, studies systems of k-chords in n-TET scales derived from a given k-mode through mode permutations and chord root translations, by combining key ideas of the neo-Riemannian Tonnetz theories with serial approaches to chordal structures.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 1.78MB
Andere Kunden interessierten sich auch für
- Rafael CubarsiChord Transformations in Higher-Dimensional Networks (eBook, PDF)165,95 €
- Advances in Algebra Analysis and Topology (eBook, ePUB)53,95 €
- Kenier CastilloA First Course on Orthogonal Polynomials (eBook, ePUB)53,95 €
- Free Resolutions in Commutative Algebra and Algebraic Geometry (eBook, ePUB)64,95 €
- Ana AgoreExtending Structures (eBook, ePUB)160,95 €
- Avner AshElliptic Tales (eBook, ePUB)11,95 €
- Ian StewartGalois Theory (eBook, ePUB)58,95 €
-
-
-
Proposes an in-depth formal framework for generalized Tonnetze, takes an algebraic approach, studies systems of k-chords in n-TET scales derived from a given k-mode through mode permutations and chord root translations, by combining key ideas of the neo-Riemannian Tonnetz theories with serial approaches to chordal structures.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Erscheinungstermin: 15. Juni 2025
- Englisch
- ISBN-13: 9781040350713
- Artikelnr.: 73779716
- Verlag: Taylor & Francis eBooks
- Erscheinungstermin: 15. Juni 2025
- Englisch
- ISBN-13: 9781040350713
- Artikelnr.: 73779716
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Rafael Cubarsi, mathematician and physicist by training, received his PhD from the Astronomy Department of the Universitat de Barcelona in 1988 with a dissertation on Chandrasekhar Stellar Systems. He developed and conducted research at the Universitat Aut`onoma de Barcelona and Universitat Polit`ectica de Catalunya, where he used to teach, and has more than 70 published papers in peer-reviewed journals to his credit. His research focused on the fields of Astronomy & Astrophysics and Mathematical Biology. Recently his interest is centered on Mathematical Theory of Music.
Preface Author Bios Chapter 1 Introduction 1.1 Tones and notes 1.2 Scale
examples 1.3 Equal temperament scales 1.4 Advantages of equal-temperament
1.5 Tone network 1.6 Chord network 1.7 Algebra of chords Chapter 2 Modes
and chords 2.1 Mode 2.2 Directed chord and chord 2.3 Reduction of
generalized modes 2.4 Submodes and supermodes 2.5 Complementary modes 2.6
Mode shifts and directed chord rotations 2.7 Number of chords and modes 2.8
Number of mode classes 2.9 Counting chords and modes Chapter 3 Subchords
3.1 Uniqueness of chords 3.2 Inverted modes 3.3 Relative inverted chords
3.4 Inverted chords 3.5 Structure of chords 3.6 Invariant subchords 3.7
Symmetric modes 3.8 Trichord examples 3.9 Trichords sharing two notes
Chapter 4 Trichords 4.1 Chord extension [A,B,C] 4.2 Extension with a new
chord 4.3 Tonnetz example 4.4 Chord extension [A,B,A] 4.5 Chord extension
[A,2A,A] 4.6 Tonal cell [A,B,C] 4.6.1 Simplified diagram 4.7 Chord cell 4.8
Tonal cells [A,B,A] and [A,2A,A] 4.9 Major and minor chords in a 12-TET
scale Chapter 5 Higher-dimensional chords 5.1 Higher-dimensional tone
network 5.2 Modular structure 5.3 Distance on the Tonnetz 5.4
Non-degenerate Tonnetz 5.5 Generalized tonal cell 5.6 Generalized Tonnetz
5.7 Generalized chord network 5.8 Chord cell facets 5.9 Tetrachords Chapter
6 Operations on the root 6.1 Translations and inversions on directed chords
6.2 Translations on chords 6.3 Dependent translations 6.4 Prograde
translations by mode intervals 6.5 Retrograde translations by mode
intervals Chapter 7 Operations on the mode 7.1 Positive and negative
inversions 7.2 Retrogradation and shifts 7.3 Mode intervals notation 7.4
Properties 7.5 Neighbor chords 7.6 Operating rules for transpositions 7.7
Translations by mode intervals 7.8 Relationships involving shifts and
translations Chapter 8 Chord transformations 8.1 Operations on root and
mode 8.2 Inversion of chords 8.3 Inversion and mirror by x 8.4 Properties
8.5 Rotations 8.6 Drifts along edges 8.7 Simple circuits 8.8 Shortcut
circuits Chapter 9 Chord network 9.1 Some families of chords 9.2 Referring
a chord to different cells 9.3 Co-cycles, co-cells, and congruent cells 9.4
Dependent operations on chords 9.5 Single translations 9.6 Translations
towards one cell 9.7 Translations towards different cells 9.8 Honeycomb of
trichords Bibliography Index
examples 1.3 Equal temperament scales 1.4 Advantages of equal-temperament
1.5 Tone network 1.6 Chord network 1.7 Algebra of chords Chapter 2 Modes
and chords 2.1 Mode 2.2 Directed chord and chord 2.3 Reduction of
generalized modes 2.4 Submodes and supermodes 2.5 Complementary modes 2.6
Mode shifts and directed chord rotations 2.7 Number of chords and modes 2.8
Number of mode classes 2.9 Counting chords and modes Chapter 3 Subchords
3.1 Uniqueness of chords 3.2 Inverted modes 3.3 Relative inverted chords
3.4 Inverted chords 3.5 Structure of chords 3.6 Invariant subchords 3.7
Symmetric modes 3.8 Trichord examples 3.9 Trichords sharing two notes
Chapter 4 Trichords 4.1 Chord extension [A,B,C] 4.2 Extension with a new
chord 4.3 Tonnetz example 4.4 Chord extension [A,B,A] 4.5 Chord extension
[A,2A,A] 4.6 Tonal cell [A,B,C] 4.6.1 Simplified diagram 4.7 Chord cell 4.8
Tonal cells [A,B,A] and [A,2A,A] 4.9 Major and minor chords in a 12-TET
scale Chapter 5 Higher-dimensional chords 5.1 Higher-dimensional tone
network 5.2 Modular structure 5.3 Distance on the Tonnetz 5.4
Non-degenerate Tonnetz 5.5 Generalized tonal cell 5.6 Generalized Tonnetz
5.7 Generalized chord network 5.8 Chord cell facets 5.9 Tetrachords Chapter
6 Operations on the root 6.1 Translations and inversions on directed chords
6.2 Translations on chords 6.3 Dependent translations 6.4 Prograde
translations by mode intervals 6.5 Retrograde translations by mode
intervals Chapter 7 Operations on the mode 7.1 Positive and negative
inversions 7.2 Retrogradation and shifts 7.3 Mode intervals notation 7.4
Properties 7.5 Neighbor chords 7.6 Operating rules for transpositions 7.7
Translations by mode intervals 7.8 Relationships involving shifts and
translations Chapter 8 Chord transformations 8.1 Operations on root and
mode 8.2 Inversion of chords 8.3 Inversion and mirror by x 8.4 Properties
8.5 Rotations 8.6 Drifts along edges 8.7 Simple circuits 8.8 Shortcut
circuits Chapter 9 Chord network 9.1 Some families of chords 9.2 Referring
a chord to different cells 9.3 Co-cycles, co-cells, and congruent cells 9.4
Dependent operations on chords 9.5 Single translations 9.6 Translations
towards one cell 9.7 Translations towards different cells 9.8 Honeycomb of
trichords Bibliography Index
Preface Author Bios Chapter 1 Introduction 1.1 Tones and notes 1.2 Scale
examples 1.3 Equal temperament scales 1.4 Advantages of equal-temperament
1.5 Tone network 1.6 Chord network 1.7 Algebra of chords Chapter 2 Modes
and chords 2.1 Mode 2.2 Directed chord and chord 2.3 Reduction of
generalized modes 2.4 Submodes and supermodes 2.5 Complementary modes 2.6
Mode shifts and directed chord rotations 2.7 Number of chords and modes 2.8
Number of mode classes 2.9 Counting chords and modes Chapter 3 Subchords
3.1 Uniqueness of chords 3.2 Inverted modes 3.3 Relative inverted chords
3.4 Inverted chords 3.5 Structure of chords 3.6 Invariant subchords 3.7
Symmetric modes 3.8 Trichord examples 3.9 Trichords sharing two notes
Chapter 4 Trichords 4.1 Chord extension [A,B,C] 4.2 Extension with a new
chord 4.3 Tonnetz example 4.4 Chord extension [A,B,A] 4.5 Chord extension
[A,2A,A] 4.6 Tonal cell [A,B,C] 4.6.1 Simplified diagram 4.7 Chord cell 4.8
Tonal cells [A,B,A] and [A,2A,A] 4.9 Major and minor chords in a 12-TET
scale Chapter 5 Higher-dimensional chords 5.1 Higher-dimensional tone
network 5.2 Modular structure 5.3 Distance on the Tonnetz 5.4
Non-degenerate Tonnetz 5.5 Generalized tonal cell 5.6 Generalized Tonnetz
5.7 Generalized chord network 5.8 Chord cell facets 5.9 Tetrachords Chapter
6 Operations on the root 6.1 Translations and inversions on directed chords
6.2 Translations on chords 6.3 Dependent translations 6.4 Prograde
translations by mode intervals 6.5 Retrograde translations by mode
intervals Chapter 7 Operations on the mode 7.1 Positive and negative
inversions 7.2 Retrogradation and shifts 7.3 Mode intervals notation 7.4
Properties 7.5 Neighbor chords 7.6 Operating rules for transpositions 7.7
Translations by mode intervals 7.8 Relationships involving shifts and
translations Chapter 8 Chord transformations 8.1 Operations on root and
mode 8.2 Inversion of chords 8.3 Inversion and mirror by x 8.4 Properties
8.5 Rotations 8.6 Drifts along edges 8.7 Simple circuits 8.8 Shortcut
circuits Chapter 9 Chord network 9.1 Some families of chords 9.2 Referring
a chord to different cells 9.3 Co-cycles, co-cells, and congruent cells 9.4
Dependent operations on chords 9.5 Single translations 9.6 Translations
towards one cell 9.7 Translations towards different cells 9.8 Honeycomb of
trichords Bibliography Index
examples 1.3 Equal temperament scales 1.4 Advantages of equal-temperament
1.5 Tone network 1.6 Chord network 1.7 Algebra of chords Chapter 2 Modes
and chords 2.1 Mode 2.2 Directed chord and chord 2.3 Reduction of
generalized modes 2.4 Submodes and supermodes 2.5 Complementary modes 2.6
Mode shifts and directed chord rotations 2.7 Number of chords and modes 2.8
Number of mode classes 2.9 Counting chords and modes Chapter 3 Subchords
3.1 Uniqueness of chords 3.2 Inverted modes 3.3 Relative inverted chords
3.4 Inverted chords 3.5 Structure of chords 3.6 Invariant subchords 3.7
Symmetric modes 3.8 Trichord examples 3.9 Trichords sharing two notes
Chapter 4 Trichords 4.1 Chord extension [A,B,C] 4.2 Extension with a new
chord 4.3 Tonnetz example 4.4 Chord extension [A,B,A] 4.5 Chord extension
[A,2A,A] 4.6 Tonal cell [A,B,C] 4.6.1 Simplified diagram 4.7 Chord cell 4.8
Tonal cells [A,B,A] and [A,2A,A] 4.9 Major and minor chords in a 12-TET
scale Chapter 5 Higher-dimensional chords 5.1 Higher-dimensional tone
network 5.2 Modular structure 5.3 Distance on the Tonnetz 5.4
Non-degenerate Tonnetz 5.5 Generalized tonal cell 5.6 Generalized Tonnetz
5.7 Generalized chord network 5.8 Chord cell facets 5.9 Tetrachords Chapter
6 Operations on the root 6.1 Translations and inversions on directed chords
6.2 Translations on chords 6.3 Dependent translations 6.4 Prograde
translations by mode intervals 6.5 Retrograde translations by mode
intervals Chapter 7 Operations on the mode 7.1 Positive and negative
inversions 7.2 Retrogradation and shifts 7.3 Mode intervals notation 7.4
Properties 7.5 Neighbor chords 7.6 Operating rules for transpositions 7.7
Translations by mode intervals 7.8 Relationships involving shifts and
translations Chapter 8 Chord transformations 8.1 Operations on root and
mode 8.2 Inversion of chords 8.3 Inversion and mirror by x 8.4 Properties
8.5 Rotations 8.6 Drifts along edges 8.7 Simple circuits 8.8 Shortcut
circuits Chapter 9 Chord network 9.1 Some families of chords 9.2 Referring
a chord to different cells 9.3 Co-cycles, co-cells, and congruent cells 9.4
Dependent operations on chords 9.5 Single translations 9.6 Translations
towards one cell 9.7 Translations towards different cells 9.8 Honeycomb of
trichords Bibliography Index