Classic Works of the Dempster-Shafer Theory of Belief Functions (eBook, PDF)
Redaktion: Yager, Ronald R.; Liu, Liping
232,95 €
232,95 €
inkl. MwSt.
Sofort per Download lieferbar
116 °P sammeln
232,95 €
Als Download kaufen
232,95 €
inkl. MwSt.
Sofort per Download lieferbar
116 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
232,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
116 °P sammeln
Classic Works of the Dempster-Shafer Theory of Belief Functions (eBook, PDF)
Redaktion: Yager, Ronald R.; Liu, Liping
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11MB
Andere Kunden interessierten sich auch für
Fuzzy Applications in Industrial Engineering (eBook, PDF)160,95 €
Forging New Frontiers: Fuzzy Pioneers I (eBook, PDF)160,95 €
Views on Fuzzy Sets and Systems from Different Perspectives (eBook, PDF)160,95 €
Uncertainty Approaches for Spatial Data Modeling and Processing (eBook, PDF)72,95 €
Zongmin MaFuzzy Database Modeling of Imprecise and Uncertain Engineering Information (eBook, PDF)72,95 €
Fuzzy Engineering Economics with Applications (eBook, PDF)112,95 €
Human-Centric Information Processing Through Granular Modelling (eBook, PDF)112,95 €-
-
-
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 806
- Erscheinungstermin: 22. Januar 2008
- Englisch
- ISBN-13: 9783540447924
- Artikelnr.: 43884997
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 806
- Erscheinungstermin: 22. Januar 2008
- Englisch
- ISBN-13: 9783540447924
- Artikelnr.: 43884997
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction.- New Methods for Reasoning Towards Posterior Distributions Based on Sample Data.- Upper and Lower Probabilities Induced by a Multivalued Mapping.- A Generalization of Bayesian Inference.- On Random Sets and Belief Functions.- Non-Additive Probabilities in the Work of Bernoulli and Lambert.- Allocations of Probability.- Computational Methods for A Mathematical Theory of Evidence.- Constructive Probability.- Belief Functions and Parametric Models.- Entropy and Specificity in a Mathematical Theory of Evidence.- A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space.- Languages and Designs for Probability Judgment.- A Set-Theoretic View of Belief Functions.- Weights of Evidence and Internal Conflict for Support Functions.- A Framework for Evidential-Reasoning Systems.- Epistemic Logics, Probability, and the Calculus of Evidence.- Implementing Dempster's Rule for Hierarchical Evidence.- Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion.- Axioms for Probability and Belief-Function Propagation.- Generalizing the Dempster-Shafer Theory to Fuzzy Sets.- Bayesian Updating and Belief Functions.- Belief-Function Formulas for Audit Risk.- Decision Making Under Dempster-Shafer Uncertainties.- Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem.- Representation of Evidence by Hints.- Combining the Results of Several Neural Network Classifiers.- The Transferable Belief Model.- A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory.- Logicist Statistics II: Inference.
Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction.- New Methods for Reasoning Towards Posterior Distributions Based on Sample Data.- Upper and Lower Probabilities Induced by a Multivalued Mapping.- A Generalization of Bayesian Inference.- On Random Sets and Belief Functions.- Non-Additive Probabilities in the Work of Bernoulli and Lambert.- Allocations of Probability.- Computational Methods for A Mathematical Theory of Evidence.- Constructive Probability.- Belief Functions and Parametric Models.- Entropy and Specificity in a Mathematical Theory of Evidence.- A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space.- Languages and Designs for Probability Judgment.- A Set-Theoretic View of Belief Functions.- Weights of Evidence and Internal Conflict for Support Functions.- A Framework for Evidential-Reasoning Systems.- Epistemic Logics, Probability, and the Calculus of Evidence.- Implementing Dempster's Rule for Hierarchical Evidence.- Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion.- Axioms for Probability and Belief-Function Propagation.- Generalizing the Dempster-Shafer Theory to Fuzzy Sets.- Bayesian Updating and Belief Functions.- Belief-Function Formulas for Audit Risk.- Decision Making Under Dempster-Shafer Uncertainties.- Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem.- Representation of Evidence by Hints.- Combining the Results of Several Neural Network Classifiers.- The Transferable Belief Model.- A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory.- Logicist Statistics II: Inference.







