José María Montesinos-Amilibia
	
		
	Classical Tessellations and Three-Manifolds (eBook, PDF)
 64,95 €
								 64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
 64,95 €
									
						Als Download kaufen
						
					
				 64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
							Jetzt verschenken
							
Alle Infos zum eBook verschenken
						
					 64,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
32 °P sammeln
José María Montesinos-Amilibia
Classical Tessellations and Three-Manifolds (eBook, PDF)
- Format: PDF
 
- Merkliste
 - Auf die Merkliste
 - Bewerten Bewerten
 - Teilen
 - Produkt teilen
 - Produkterinnerung
 - Produkterinnerung
 

							Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
							bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
						Hier können Sie sich einloggen
							Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
						
					
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
 - ohne Kopierschutz
 - eBook Hilfe
 - Größe: 13.72MB
 
Andere Kunden interessierten sich auch für
Nikolai SavelievInvariants of Homology 3-Spheres (eBook, PDF)104,95 €
Curvature and Topology of Riemannian Manifolds (eBook, PDF)36,95 €
Arthur L. BesseEinstein Manifolds (eBook, PDF)44,95 €
Riccardo BenedettiBranched Standard Spines of 3-manifolds (eBook, PDF)20,95 €
D. B. FuchsTopology II (eBook, PDF)72,95 €
Pei-Dong LiuSmooth Ergodic Theory of Random Dynamical Systems (eBook, PDF)44,95 €
Victor W GuilleminSupersymmetry and Equivariant de Rham Theory (eBook, PDF)64,95 €- 				
 - 				
 - 				
 
Produktdetails
- Verlag: Springer Berlin Heidelberg
 - Seitenzahl: 230
 - Erscheinungstermin: 6. Dezember 2012
 - Englisch
 - ISBN-13: 9783642615726
 - Artikelnr.: 53139058
 
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
 
One.- S1-Bundles Over Surfaces.- 1.1 The spherical tangent bundle of the 2-sphere S2.- 1.2 The S1-bundles of oriented closed surfaces.- 1.3 The Euler number of ST(S2).- 1.4 The Euler number as a self-intersection number.- 1.5 The Hopf fibration.- 1.6 Description of non-orientable surfaces.- 1.7 S1-bundles over Nk.- 1.8 An illustrative example: IRP2 ? ?P2.- 1.9 The projective tangent S1-bundles.- Two.- Manifolds of Tessellations on the Euclidean Plane.- 2.1 The manifold of square-tilings.- 2.2 The isometries of the euclidean plane.- 2.3 Interpretation of the manifold of squaretilings.- 2.4 The subgroup ?.- 2.5 The quotient ?E(2).- 2.6 The tessellations of the euclidean plane.- 2.7 The manifolds of euclidean tessellations.- 2.8 Involutions in the manifolds of euclidean tessellations.- 2.9 The fundamental groups of the manifolds of euclidean tessellations.- 2.10 Presentations of the fundamental groups of the manifolds M(?).- 2.11 The groups $$ tilde Gamma $$ as 3-dimensional crystallographic groups.- Appendix A.- Orbifolds.- Three.- Manifolds of Spherical Tessellations.- 3.1 The isometries of the 2-sphere.- 3.2 The fundamental group of SO(3).- 3.3 Review of quaternions.- 3.4 Right-helix turns.- 3.5 Left-helix turns.- 3.6 The universal cover of SO(4).- 3.7 The finite subgroups of SO(3).- 3.8 The finite subgroups of the quaternions.- 3.9 Description of the manifolds of tessellations.- 3.10 Prism manifolds.- 3.11 The octahedral space.- 3.12 The truncated-cube space.- 3.13 The dodecahedral space.- 3.14 Exercises on coverings.- 3.15 Involutions in the manifolds of spherical tessellations.- 3.16 The groups $$ tilde Gamma $$ as groups of tessellations of S3.- Four.- Seifert Manifolds.- 4.1 Definition.- 4.2 Invariants.- 4.3 Constructing the manifold from the invariants.- 4.4 Change of orientation and normalization.- 4.5 The manifolds of euclidean tessellations as Seifert manifolds.- 4.6 The manifolds of spherical tessellations as Seifert manifolds.- 4.7 Involutions on Seifert manifolds.- 4.8 Involutions on the manifolds of tessellations.- Five.- Manifolds of Hyperbolic Tessellations.- 5.1 The hyperbolic tessellations.- 5.2 The groups S?mn, 1/? + 1/m + 1/n < 1.- 5.3 The manifolds of hyperbolic tessellations.- 5.4 The S1-action.- 5.5 Computing b.- 5.6 Involutions.- Appendix B.- The Hyperbolic Plane.- B.5 Metric.- B.6 The complex projective line.- B.7 The stereographic projection.- B.8 Interpreting G*.- B.10 The parabolic group.- B.11 The elliptic group.- B.12 The hyperbolic group.- Source of the ornaments placed at the end of the chapters.- References.- Further reading.- Notes to Plate I.- Notes to Plate II.Contents: S1-Bundles Over Surfaces.- Manifolds of Tessellations on the Euclidean Plane.- Appendix A: Orbifolds.- Manifolds of Spherical Tessellations.- Seifert Manifolds.- Manifolds of Hyperbolic Tessellations.- Appendix B: The Hyperbolic Plane.- Source of the Ornaments.- References.- Further Reading.- Notes to Plate I.- Notes to Plate II.
	One.- S1-Bundles Over Surfaces.- 1.1 The spherical tangent bundle of the 2-sphere S2.- 1.2 The S1-bundles of oriented closed surfaces.- 1.3 The Euler number of ST(S2).- 1.4 The Euler number as a self-intersection number.- 1.5 The Hopf fibration.- 1.6 Description of non-orientable surfaces.- 1.7 S1-bundles over Nk.- 1.8 An illustrative example: IRP2 ? ?P2.- 1.9 The projective tangent S1-bundles.- Two.- Manifolds of Tessellations on the Euclidean Plane.- 2.1 The manifold of square-tilings.- 2.2 The isometries of the euclidean plane.- 2.3 Interpretation of the manifold of squaretilings.- 2.4 The subgroup ?.- 2.5 The quotient ?E(2).- 2.6 The tessellations of the euclidean plane.- 2.7 The manifolds of euclidean tessellations.- 2.8 Involutions in the manifolds of euclidean tessellations.- 2.9 The fundamental groups of the manifolds of euclidean tessellations.- 2.10 Presentations of the fundamental groups of the manifolds M(?).- 2.11 The groups $$ tilde Gamma $$ as 3-dimensional crystallographic groups.- Appendix A.- Orbifolds.- Three.- Manifolds of Spherical Tessellations.- 3.1 The isometries of the 2-sphere.- 3.2 The fundamental group of SO(3).- 3.3 Review of quaternions.- 3.4 Right-helix turns.- 3.5 Left-helix turns.- 3.6 The universal cover of SO(4).- 3.7 The finite subgroups of SO(3).- 3.8 The finite subgroups of the quaternions.- 3.9 Description of the manifolds of tessellations.- 3.10 Prism manifolds.- 3.11 The octahedral space.- 3.12 The truncated-cube space.- 3.13 The dodecahedral space.- 3.14 Exercises on coverings.- 3.15 Involutions in the manifolds of spherical tessellations.- 3.16 The groups $$ tilde Gamma $$ as groups of tessellations of S3.- Four.- Seifert Manifolds.- 4.1 Definition.- 4.2 Invariants.- 4.3 Constructing the manifold from the invariants.- 4.4 Change of orientation and normalization.- 4.5 The manifolds of euclidean tessellations as Seifert manifolds.- 4.6 The manifolds of spherical tessellations as Seifert manifolds.- 4.7 Involutions on Seifert manifolds.- 4.8 Involutions on the manifolds of tessellations.- Five.- Manifolds of Hyperbolic Tessellations.- 5.1 The hyperbolic tessellations.- 5.2 The groups S?mn, 1/? + 1/m + 1/n < 1.- 5.3 The manifolds of hyperbolic tessellations.- 5.4 The S1-action.- 5.5 Computing b.- 5.6 Involutions.- Appendix B.- The Hyperbolic Plane.- B.5 Metric.- B.6 The complex projective line.- B.7 The stereographic projection.- B.8 Interpreting G*.- B.10 The parabolic group.- B.11 The elliptic group.- B.12 The hyperbolic group.- Source of the ornaments placed at the end of the chapters.- References.- Further reading.- Notes to Plate I.- Notes to Plate II.Contents: S1-Bundles Over Surfaces.- Manifolds of Tessellations on the Euclidean Plane.- Appendix A: Orbifolds.- Manifolds of Spherical Tessellations.- Seifert Manifolds.- Manifolds of Hyperbolic Tessellations.- Appendix B: The Hyperbolic Plane.- Source of the Ornaments.- References.- Further Reading.- Notes to Plate I.- Notes to Plate II.
				






