36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Doctoral Thesis / Dissertation from the year 2024 in the subject Computer Science, , language: English, abstract: This book presents an in-depth study on modeling collision avoidance systems in road traffic, leveraging advances in machine learning and informed neural networks. It introduces a novel macroscopic traffic flow model based on Lighthill-Whitham-Richards (LWR) in 1D and 2D to capture longitudinal and lateral traffic flows. RBF, collocation B-spline and PINN methods were used for numerical resolution, providing insights into traffic dynamics and collision phenomena. Using the SUMO…mehr

Produktbeschreibung
Doctoral Thesis / Dissertation from the year 2024 in the subject Computer Science, , language: English, abstract: This book presents an in-depth study on modeling collision avoidance systems in road traffic, leveraging advances in machine learning and informed neural networks. It introduces a novel macroscopic traffic flow model based on Lighthill-Whitham-Richards (LWR) in 1D and 2D to capture longitudinal and lateral traffic flows. RBF, collocation B-spline and PINN methods were used for numerical resolution, providing insights into traffic dynamics and collision phenomena. Using the SUMO (Simulation of Urban Mobility) platform, extensive data from the proposed model were collected to train classifiers such as logistic regression, gradient boosting, AdaBoost and SVM to predict collisions well. To mitigate the high number of collisions, the IDM (Intelligent Driver Model) model was properly integrated, improving the behavior and promoting traffic safety.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.