The book begins with foundational concepts in probability theory, covering random variables, probability distributions, and expectation. It then delves into statistical inference, discussing estimation, hypothesis testing, and regression analysis. Advanced topics like Bayesian statistics, machine learning algorithms, and resampling methods are also explored.
Key strengths of this textbook include clear and concise explanations, numerous examples, and exercises to reinforce learning. The accessible yet rigorous writing style makes complex concepts understandable to readers at various levels of expertise. Modern computational tools and techniques are incorporated, emphasizing practical aspects of statistical analysis in the era of big data. Readers are encouraged to apply their knowledge using software packages like R and Python, enhancing their skills in data analysis and interpretation.
This comprehensive and authoritative textbook covers a wide range of topics in statistics, making it an indispensable resource for students, researchers, and practitioners alike. It provides a solid foundation in statistical theory and its real-world applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.