The conventional diagnostic techniques of cancer are not always effective as they rely on the physical and morphological appearance of the tumour. Early stage prediction and diagnosis is very difficult with conventional techniques. It is well known that cancers are involved in genome level changes. As of now, the prognosis of various types of cancer depends upon findings related to the data generated through different experiments. Several machine learning techniques exist in analysing the data of expressed genes; however, the recent results related with deep learning algorithms are more accurate and accommodative, as they are effective in selecting and classifying informative genes. This book explores the probabilistic computational deep learning model for cancer classification and prediction.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.