Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage (eBook, PDF)
Redaktion: Al-Khoury, Rafid; Bundschuh, Jochen
Alle Infos zum eBook verschenken
Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage (eBook, PDF)
Redaktion: Al-Khoury, Rafid; Bundschuh, Jochen
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Hier können Sie sich einloggen
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book addresses two distinct, but related and highly important geoenvironmental applications: CO2 sequestration in underground formation, and Compressed Air Energy Storage (CAES). Sequestration of carbon dioxide in underground formations is considered an effective technique and a viable strategy for the mitigation of global warming and climate change. However, the short-term and long-term consequences of such an operation might be catastrophic if the involved hydro-chemo-physical and mechanical processes at the regional level are not properly addressed. Compressed air energy storage is a…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 161.59MB
- Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage (eBook, ePUB)101,95 €
- Energy Conversion and Green Energy Storage (eBook, PDF)48,95 €
- Steady State and Time Dependent Compressed Air Energy Storage Model Validated with Huntorf Operational Data and Investigation of Hydrogen Options for a Sustainable Energy Supply (eBook, PDF)33,90 €
- Smart Grids for Renewable Energy Systems, Electric Vehicles and Energy Storage Systems (eBook, PDF)48,95 €
- Materials for Energy Storage (eBook, PDF)52,95 €
- Large Energy Storage Systems Handbook (eBook, PDF)80,95 €
- Anand RamanathanAdvances in Clean Energy (eBook, PDF)62,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 574
- Erscheinungstermin: 17. April 2014
- Englisch
- ISBN-13: 9781315778723
- Artikelnr.: 41066524
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 574
- Erscheinungstermin: 17. April 2014
- Englisch
- ISBN-13: 9781315778723
- Artikelnr.: 41066524
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Geological CO2 sequestration and compressed air energy storage - An
introduction Jochen Bundschuh & Rafid Al-Khoury 1.1 Atmospheric CO2
concentration and mitigation 1.2 Geological CO2 sequestration 1.3
Compressed air energy storage 1.4 Computational modeling PART I: CO2
Geo-sequestration 2. On the theory of CO2 geo-sequestration Mehdi Musivand
Arzanfudi & Rafid Al-Khoury 2.1 Introduction 2.2 Definitions 2.3 Averaging
process 2.4 Modeling approach 2.5 General balance equations 2.6 Balance
equations for special cases 2.7 Constitutive relationships 2.8 Field
equations 2.9 Conclusion PART I.I: Reactive transport modeling 3. Modeling
multiscale-multiphase-multicomponent reactive flows in porous media:
Application to CO2 sequestration and enhanced geothermal energy using
PFLOTRAN Peter C. Lichtner & Satish Karra 3.1 Introduction 3.2 Single
continuum 3.3 Multiple interacting continua 3.4 Numerical implementation
3.5 Parallelization using the PETSc parallel framework 3.6 Single component
system 3.7 Applications 3.8 Conclusion 4. Pore-network modeling of
multi-component reactive transport under (variably-) saturated conditions
Amir Raoof, Hamidreza M. Nick, S. Majid Hassanizadeh & Christopher J.
Spiers 4.1 Introduction 4.2 Pore-network modeling 4.3 Well-bore cement
degradation 4.4 Saturation dependent solute dispersivity 5. Reactive
transport modeling issues of CO2 geological storage Tianfu Xu & Liange
Zheng 5.1 Introduction 5.2 Model description 5.3 Fate of injected CO2 5.4
Impact on the groundwater quality 5.5 Modeling issues 5.6 Conclusions PART
I.II: Numerical modeling 6. Role of computational science in geological
storage of CO2 Mojdeh Delshad, Reza Tavakoil & Mary F. Wheeler 6.1
Introduction 6.2 Compositional flow model 6.3 Thermal energy equation 6.4
Geochemistry model 6.5 Petrophysical property model 6.6 Computational
results 6.7 Ensemble kalman filter history matching methodology 6.8 Summary
and current extensions 7. A robust implicit pressure explicit mass method
for multi-phase multi-component flow including capillary pressure and
buoyancy Florian Doster, Eirik Keilegavlen & Jan M. Nordbotten 7.1
Introduction 7.2 Physical background 7.3 The impem algorithm 7.4 Motivation
for the discretization 7.5 Comparison of different approaches 7.6
Concluding remarks 8. Simulation of CO2 sequestration in brine aquifers
with geomechanical coupling Philip H.Winterfeld &Yu-ShuWu 8.1 Introduction
8.2 Simulator geomechanical equations 8.3 Simulator conservation equations
8.4 Discretization of single-porosity simulator conservation equations 8.5
Multi-porosity flow model 8.6 Geomechanical boundary conditions 8.7 Rock
property correlations 8.8 Fluid property modules 8.9 Example simulations
8.10 Summary and conclusions 9. Model development for the numerical
simulation of CO2 storage in naturally fractured saline aquifers Jim
Douglas, Jr., Felipe Pereira & Celestin Zemtsop 9.1 Introduction 9.2 The
single porosity problem 9.3 Homogenization 9.4 Thermodynamics 9.5 Numerical
simulations and results 9.6 Conclusions 10. Coupled partition of
unity-level set finite element formulation for CO2 geo-sequestration Rafid
Al-Khoury & Mojtaba Talebian 10.1 Introduction 10.2 Governing equations
10.2.1 Equilibrium equations 10.3 Mixed discretization scheme 10.4
Verifications examples 10.5 Conclusions PART I.III: Aquifer optimization
11. Optimization and data assimilation for geological carbon storage David
A. Cameron & Louis J. Durlofsky 11.1 Introduction 11.2 A-priori
optimization of well placement and control 11.3 Data assimilation and
sensor placement 11.4 Aquifer model definition 11.5 Results - a-priori well
placement and control optimization 11.6 Results - optimal sensor placement
and data assimilation 11.7 Concluding remarks 12. Density-driven natural
convection flow of CO2 in heterogeneous porous media Rouhollah Farajzadeh,
Bernard Meulenbroek & Johannes Bruining 12.1 Introduction 12.2
Density-driven flow in heterogeneous media 12.3 Analytical model for
density-driven natural convection flow 12.4 Summary 12.5 Appendix 12a.
Numerical solution of the equations PART II: Compressed air energy storage
13. An introduction to the compressed air energy storage Reinhard Leithner
& Lasse Nielsen 13.1 Introduction 13.2 Fundamentals of compressed air
energy storages 13.3 CAES-cycles - operated and planned 13.4 Summary 14.
Simulation of an isobaric adiabatic compressed air energy storage combined
cycle Lasse Nielsen, Dawei Qi, Niels Brinkmeier, Andreas Hauschke &
Reinhard Leithner 14.1 The ISACOAST-CC concept 14.2 Simulation models 14.3
Simulation results 14.4 Summary 15. Rigorous process simulation of
compressed air energy storage (CAES) in porous media systems Lehua Pan &
Curtis M. Oldenburg 15.1 Introduction 15.2 Background 15.3 Methods 15.4
Example PM-CAES simulation 15.4.1 A note on time steps 15.5 Conclusions 16.
Detailed system level simulation of compressed air energy storage
Siddhartha Kumar Khaitan & Mandhapati Raju 16.1 Introduction 16.2
Background 16.3 Caes plant operation 16.4 Component modeling 16.5 Modeling
Huntorf CAES plant: A case study 16.6 Conclusions Subject index
1. Geological CO2 sequestration and compressed air energy storage - An
introduction Jochen Bundschuh & Rafid Al-Khoury 1.1 Atmospheric CO2
concentration and mitigation 1.2 Geological CO2 sequestration 1.3
Compressed air energy storage 1.4 Computational modeling PART I: CO2
Geo-sequestration 2. On the theory of CO2 geo-sequestration Mehdi Musivand
Arzanfudi & Rafid Al-Khoury 2.1 Introduction 2.2 Definitions 2.3 Averaging
process 2.4 Modeling approach 2.5 General balance equations 2.6 Balance
equations for special cases 2.7 Constitutive relationships 2.8 Field
equations 2.9 Conclusion PART I.I: Reactive transport modeling 3. Modeling
multiscale-multiphase-multicomponent reactive flows in porous media:
Application to CO2 sequestration and enhanced geothermal energy using
PFLOTRAN Peter C. Lichtner & Satish Karra 3.1 Introduction 3.2 Single
continuum 3.3 Multiple interacting continua 3.4 Numerical implementation
3.5 Parallelization using the PETSc parallel framework 3.6 Single component
system 3.7 Applications 3.8 Conclusion 4. Pore-network modeling of
multi-component reactive transport under (variably-) saturated conditions
Amir Raoof, Hamidreza M. Nick, S. Majid Hassanizadeh & Christopher J.
Spiers 4.1 Introduction 4.2 Pore-network modeling 4.3 Well-bore cement
degradation 4.4 Saturation dependent solute dispersivity 5. Reactive
transport modeling issues of CO2 geological storage Tianfu Xu & Liange
Zheng 5.1 Introduction 5.2 Model description 5.3 Fate of injected CO2 5.4
Impact on the groundwater quality 5.5 Modeling issues 5.6 Conclusions PART
I.II: Numerical modeling 6. Role of computational science in geological
storage of CO2 Mojdeh Delshad, Reza Tavakoil & Mary F. Wheeler 6.1
Introduction 6.2 Compositional flow model 6.3 Thermal energy equation 6.4
Geochemistry model 6.5 Petrophysical property model 6.6 Computational
results 6.7 Ensemble kalman filter history matching methodology 6.8 Summary
and current extensions 7. A robust implicit pressure explicit mass method
for multi-phase multi-component flow including capillary pressure and
buoyancy Florian Doster, Eirik Keilegavlen & Jan M. Nordbotten 7.1
Introduction 7.2 Physical background 7.3 The impem algorithm 7.4 Motivation
for the discretization 7.5 Comparison of different approaches 7.6
Concluding remarks 8. Simulation of CO2 sequestration in brine aquifers
with geomechanical coupling Philip H.Winterfeld &Yu-ShuWu 8.1 Introduction
8.2 Simulator geomechanical equations 8.3 Simulator conservation equations
8.4 Discretization of single-porosity simulator conservation equations 8.5
Multi-porosity flow model 8.6 Geomechanical boundary conditions 8.7 Rock
property correlations 8.8 Fluid property modules 8.9 Example simulations
8.10 Summary and conclusions 9. Model development for the numerical
simulation of CO2 storage in naturally fractured saline aquifers Jim
Douglas, Jr., Felipe Pereira & Celestin Zemtsop 9.1 Introduction 9.2 The
single porosity problem 9.3 Homogenization 9.4 Thermodynamics 9.5 Numerical
simulations and results 9.6 Conclusions 10. Coupled partition of
unity-level set finite element formulation for CO2 geo-sequestration Rafid
Al-Khoury & Mojtaba Talebian 10.1 Introduction 10.2 Governing equations
10.2.1 Equilibrium equations 10.3 Mixed discretization scheme 10.4
Verifications examples 10.5 Conclusions PART I.III: Aquifer optimization
11. Optimization and data assimilation for geological carbon storage David
A. Cameron & Louis J. Durlofsky 11.1 Introduction 11.2 A-priori
optimization of well placement and control 11.3 Data assimilation and
sensor placement 11.4 Aquifer model definition 11.5 Results - a-priori well
placement and control optimization 11.6 Results - optimal sensor placement
and data assimilation 11.7 Concluding remarks 12. Density-driven natural
convection flow of CO2 in heterogeneous porous media Rouhollah Farajzadeh,
Bernard Meulenbroek & Johannes Bruining 12.1 Introduction 12.2
Density-driven flow in heterogeneous media 12.3 Analytical model for
density-driven natural convection flow 12.4 Summary 12.5 Appendix 12a.
Numerical solution of the equations PART II: Compressed air energy storage
13. An introduction to the compressed air energy storage Reinhard Leithner
& Lasse Nielsen 13.1 Introduction 13.2 Fundamentals of compressed air
energy storages 13.3 CAES-cycles - operated and planned 13.4 Summary 14.
Simulation of an isobaric adiabatic compressed air energy storage combined
cycle Lasse Nielsen, Dawei Qi, Niels Brinkmeier, Andreas Hauschke &
Reinhard Leithner 14.1 The ISACOAST-CC concept 14.2 Simulation models 14.3
Simulation results 14.4 Summary 15. Rigorous process simulation of
compressed air energy storage (CAES) in porous media systems Lehua Pan &
Curtis M. Oldenburg 15.1 Introduction 15.2 Background 15.3 Methods 15.4
Example PM-CAES simulation 15.4.1 A note on time steps 15.5 Conclusions 16.
Detailed system level simulation of compressed air energy storage
Siddhartha Kumar Khaitan & Mandhapati Raju 16.1 Introduction 16.2
Background 16.3 Caes plant operation 16.4 Component modeling 16.5 Modeling
Huntorf CAES plant: A case study 16.6 Conclusions Subject index