Computer Vision - ECCV 2024 Workshops (eBook, PDF)
Milan, Italy, September 29-October 4, 2024, Proceedings, Part XVIII
Redaktion: Del Bue, Alessio; Tommasi, Tatiana; Pont-Tuset, Jordi; Canton, Cristian
64,95 €
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
64,95 €
Als Download kaufen
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
32 °P sammeln
Computer Vision - ECCV 2024 Workshops (eBook, PDF)
Milan, Italy, September 29-October 4, 2024, Proceedings, Part XVIII
Redaktion: Del Bue, Alessio; Tommasi, Tatiana; Pont-Tuset, Jordi; Canton, Cristian
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The multi-volume set LNCS 15623 until LNCS 15646 constitutes the proceedings of the workshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024, which took place in Milan, Italy, during September 29-October 4, 2024.
These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 73.98MB
Andere Kunden interessierten sich auch für
Computer Vision - ECCV 2024 Workshops (eBook, PDF)64,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)112,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)64,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)64,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)64,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)112,95 €
Computer Vision - ECCV 2024 Workshops (eBook, PDF)64,95 €-
-
-
The multi-volume set LNCS 15623 until LNCS 15646 constitutes the proceedings of the workshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024, which took place in Milan, Italy, during September 29-October 4, 2024.
These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.
These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 382
- Erscheinungstermin: 20. Mai 2025
- Englisch
- ISBN-13: 9783031916724
- Artikelnr.: 74276734
- Verlag: Springer International Publishing
- Seitenzahl: 382
- Erscheinungstermin: 20. Mai 2025
- Englisch
- ISBN-13: 9783031916724
- Artikelnr.: 74276734
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- DeepClean: Machine Unlearning on the Cheap by Resetting Privacy Sensitive Weights using the Fisher Diagonal.
.- Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models.
.- Aligning Vision Language Models with Contrastive Learning.
.- Open-set object detection: towards unified problem formulation and benchmarking.
.- Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts.
.- SOOD-ImageNet: a Large-Scale Dataset for Semantic Out-Of-Distribution Image Classification and Semantic Segmentation.
.- Online Stochastic Optimization for Data with Temporal Dependencies.
.- A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models.
.- OSSA: Unsupervised One-Shot Style Adaptation.
.- ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer.
.- Open-set Plankton Recognition.
.- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?.
.- On the Potential of Open-Vocabulary Models for Object Detection in Unusual Street Scenes.
.- Source-Free Domain Adaptation for YOLO Object Detection.
.- Task-Specific Adaptation of Segmentation Foundation Model via Prompt Learning.
.- Utilizing Class-Agnostic Point-to-Box Regressors as Object Proposal Generators.
.- Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective.
.- Improving Generalization in Visual Reasoning via Self-Ensemble.
.- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation.
.- Image Translation with Kernel Prediction Networks for Semantic Segmentation.
.- Robust fine-tuning and adaptation of zero-shot models via adaptive weightspace ensembling.
.- Robustness to Spurious Correlation: A Comprehensive Review.
.- Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models.
.- Aligning Vision Language Models with Contrastive Learning.
.- Open-set object detection: towards unified problem formulation and benchmarking.
.- Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts.
.- SOOD-ImageNet: a Large-Scale Dataset for Semantic Out-Of-Distribution Image Classification and Semantic Segmentation.
.- Online Stochastic Optimization for Data with Temporal Dependencies.
.- A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models.
.- OSSA: Unsupervised One-Shot Style Adaptation.
.- ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer.
.- Open-set Plankton Recognition.
.- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?.
.- On the Potential of Open-Vocabulary Models for Object Detection in Unusual Street Scenes.
.- Source-Free Domain Adaptation for YOLO Object Detection.
.- Task-Specific Adaptation of Segmentation Foundation Model via Prompt Learning.
.- Utilizing Class-Agnostic Point-to-Box Regressors as Object Proposal Generators.
.- Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective.
.- Improving Generalization in Visual Reasoning via Self-Ensemble.
.- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation.
.- Image Translation with Kernel Prediction Networks for Semantic Segmentation.
.- Robust fine-tuning and adaptation of zero-shot models via adaptive weightspace ensembling.
.- Robustness to Spurious Correlation: A Comprehensive Review.
.- DeepClean: Machine Unlearning on the Cheap by Resetting Privacy Sensitive Weights using the Fisher Diagonal.
.- Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models.
.- Aligning Vision Language Models with Contrastive Learning.
.- Open-set object detection: towards unified problem formulation and benchmarking.
.- Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts.
.- SOOD-ImageNet: a Large-Scale Dataset for Semantic Out-Of-Distribution Image Classification and Semantic Segmentation.
.- Online Stochastic Optimization for Data with Temporal Dependencies.
.- A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models.
.- OSSA: Unsupervised One-Shot Style Adaptation.
.- ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer.
.- Open-set Plankton Recognition.
.- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?.
.- On the Potential of Open-Vocabulary Models for Object Detection in Unusual Street Scenes.
.- Source-Free Domain Adaptation for YOLO Object Detection.
.- Task-Specific Adaptation of Segmentation Foundation Model via Prompt Learning.
.- Utilizing Class-Agnostic Point-to-Box Regressors as Object Proposal Generators.
.- Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective.
.- Improving Generalization in Visual Reasoning via Self-Ensemble.
.- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation.
.- Image Translation with Kernel Prediction Networks for Semantic Segmentation.
.- Robust fine-tuning and adaptation of zero-shot models via adaptive weightspace ensembling.
.- Robustness to Spurious Correlation: A Comprehensive Review.
.- Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models.
.- Aligning Vision Language Models with Contrastive Learning.
.- Open-set object detection: towards unified problem formulation and benchmarking.
.- Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts.
.- SOOD-ImageNet: a Large-Scale Dataset for Semantic Out-Of-Distribution Image Classification and Semantic Segmentation.
.- Online Stochastic Optimization for Data with Temporal Dependencies.
.- A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models.
.- OSSA: Unsupervised One-Shot Style Adaptation.
.- ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer.
.- Open-set Plankton Recognition.
.- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?.
.- On the Potential of Open-Vocabulary Models for Object Detection in Unusual Street Scenes.
.- Source-Free Domain Adaptation for YOLO Object Detection.
.- Task-Specific Adaptation of Segmentation Foundation Model via Prompt Learning.
.- Utilizing Class-Agnostic Point-to-Box Regressors as Object Proposal Generators.
.- Introducing a Class-Aware Metric for Monocular Depth Estimation: An Automotive Perspective.
.- Improving Generalization in Visual Reasoning via Self-Ensemble.
.- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation.
.- Image Translation with Kernel Prediction Networks for Semantic Segmentation.
.- Robust fine-tuning and adaptation of zero-shot models via adaptive weightspace ensembling.
.- Robustness to Spurious Correlation: A Comprehensive Review.







