25,95 €
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
13 °P sammeln
25,95 €
Als Download kaufen
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
13 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
25,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.14MB
Andere Kunden interessierten sich auch für
- Yves AndréG-Functions and Geometry (eBook, PDF)49,99 €
- Hanspeter KraftGeometrische Methoden in der Invariantentheorie (eBook, PDF)33,26 €
- Frank RäbigerBeiträge zur Strukturtheorie der Grothendieck-Räume (eBook, PDF)42,99 €
- R. CourantWas ist Mathematik? (eBook, PDF)42,99 €
- Moritz PaschVorlesungen über die neuere Geometrie (eBook, PDF)49,99 €
- Francesco SeveriVorlesungen über Algebraische Geometrie (eBook, PDF)35,96 €
- Richard CourantWas ist Mathematik? (eBook, PDF)39,99 €
-
-
-
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 240
- Erscheinungstermin: 9. März 2013
- Englisch
- ISBN-13: 9783322854667
- Artikelnr.: 53085309
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 The zero
dimensional case: number fields.
1.1 Class Numbers.
1.2 Dirichlet L
Functions.
1.3 The Class Number Formula.
1.4 Abelian Number Fields.
1.5 Non
abelian Number Fields and Artin L
Functions.
2 The one
dimensional case: elliptic curves.
2.1 General Features of Elliptic Curves.
2.2 Varieties over Finite Fields.
2.3 L
Functions of Elliptic Curves.
2.4 Complex Multiplication and Modular Elliptic Curves.
2.5 Arithmetic of Elliptic Curves.
2.6 The Tate
Shafarevich Group.
2.7 Curves of Higher Genus.
2.8 Appendix.
3 The general formalism of L
functions, Deligne cohomology and Poincaré duality theories.
3.1 The Standard Conjectures.
3.2 Deligne
Beilinson Cohomology.
3.3 Deligne Homology.
3.4 Poincaré Duality Theories.
4 Riemann
Roch, K
theory and motivic cohomology.
4.1 Grothendieck
Riemann
Roch.
4.2 Adams Operations.
4.3 Riemann
Roch for Singular Varieties.
4.4 Higher Algebraic K
Theory.
4.5 Adams Operations in Higher Algebraic K
Theory.
4.6 Chern Classes in Higher Algebraic K
Theory.
4.7 Gillet's Riemann
Roch Theorem.
4.8 Motivic Cohomology.
5 Regulators, Deligne's conjecture and Beilinson's first conjecture.
5.1 Borel's Regulator.
5.2 Beilinson's Regulator.
5.3 Special Cases and Zagier's Conjecture.
5.4 Riemann Surfaces.
5.5 Models over Spec(Z).
5.6 Deligne's Conjecture.
5.7 Beilinson's First Conjecture.
6 Beilinson's second conjecture.
6.1 Beilinson's Second Conjecture.
6.2 Hilbert Modular Surfaces.
7 Arithmetic intersections and Beilinson's third conjecture.
7.1 The Intersection Pairing.
7.2 Beilinson's Third Conjecture.
8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel
Jacobi maps.
8.1 The Hodge Conjecture.
8.2 Absolute Hodge Cohomology.
8.3 Geometric Interpretation.
8.4Abel
Jacobi Maps.
8.5 The Tate Conjecture.
8.6 Absolute Hodge Cycles.
8.7 Motives.
8.8 Grothendieck's Conjectures.
8.9 Motives and Cohomology.
9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.
9.1 Tate Modules.
9.2 Mixed Realizations.
9.3 Weights.
9.4 Hodge and Tate Conjectures.
9.5 The Homological Regulator.
10 Examples and Results.
10.1 B & S
D revisited.
10.2 Deligne's Conjecture.
10.3 Artin and Dirichlet Motives.
10.4 Modular Curves.
10.5 Other Modular Examples.
10.6 Linear Varieties.
dimensional case: number fields.
1.1 Class Numbers.
1.2 Dirichlet L
Functions.
1.3 The Class Number Formula.
1.4 Abelian Number Fields.
1.5 Non
abelian Number Fields and Artin L
Functions.
2 The one
dimensional case: elliptic curves.
2.1 General Features of Elliptic Curves.
2.2 Varieties over Finite Fields.
2.3 L
Functions of Elliptic Curves.
2.4 Complex Multiplication and Modular Elliptic Curves.
2.5 Arithmetic of Elliptic Curves.
2.6 The Tate
Shafarevich Group.
2.7 Curves of Higher Genus.
2.8 Appendix.
3 The general formalism of L
functions, Deligne cohomology and Poincaré duality theories.
3.1 The Standard Conjectures.
3.2 Deligne
Beilinson Cohomology.
3.3 Deligne Homology.
3.4 Poincaré Duality Theories.
4 Riemann
Roch, K
theory and motivic cohomology.
4.1 Grothendieck
Riemann
Roch.
4.2 Adams Operations.
4.3 Riemann
Roch for Singular Varieties.
4.4 Higher Algebraic K
Theory.
4.5 Adams Operations in Higher Algebraic K
Theory.
4.6 Chern Classes in Higher Algebraic K
Theory.
4.7 Gillet's Riemann
Roch Theorem.
4.8 Motivic Cohomology.
5 Regulators, Deligne's conjecture and Beilinson's first conjecture.
5.1 Borel's Regulator.
5.2 Beilinson's Regulator.
5.3 Special Cases and Zagier's Conjecture.
5.4 Riemann Surfaces.
5.5 Models over Spec(Z).
5.6 Deligne's Conjecture.
5.7 Beilinson's First Conjecture.
6 Beilinson's second conjecture.
6.1 Beilinson's Second Conjecture.
6.2 Hilbert Modular Surfaces.
7 Arithmetic intersections and Beilinson's third conjecture.
7.1 The Intersection Pairing.
7.2 Beilinson's Third Conjecture.
8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel
Jacobi maps.
8.1 The Hodge Conjecture.
8.2 Absolute Hodge Cohomology.
8.3 Geometric Interpretation.
8.4Abel
Jacobi Maps.
8.5 The Tate Conjecture.
8.6 Absolute Hodge Cycles.
8.7 Motives.
8.8 Grothendieck's Conjectures.
8.9 Motives and Cohomology.
9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.
9.1 Tate Modules.
9.2 Mixed Realizations.
9.3 Weights.
9.4 Hodge and Tate Conjectures.
9.5 The Homological Regulator.
10 Examples and Results.
10.1 B & S
D revisited.
10.2 Deligne's Conjecture.
10.3 Artin and Dirichlet Motives.
10.4 Modular Curves.
10.5 Other Modular Examples.
10.6 Linear Varieties.
1 The zero
dimensional case: number fields.
1.1 Class Numbers.
1.2 Dirichlet L
Functions.
1.3 The Class Number Formula.
1.4 Abelian Number Fields.
1.5 Non
abelian Number Fields and Artin L
Functions.
2 The one
dimensional case: elliptic curves.
2.1 General Features of Elliptic Curves.
2.2 Varieties over Finite Fields.
2.3 L
Functions of Elliptic Curves.
2.4 Complex Multiplication and Modular Elliptic Curves.
2.5 Arithmetic of Elliptic Curves.
2.6 The Tate
Shafarevich Group.
2.7 Curves of Higher Genus.
2.8 Appendix.
3 The general formalism of L
functions, Deligne cohomology and Poincaré duality theories.
3.1 The Standard Conjectures.
3.2 Deligne
Beilinson Cohomology.
3.3 Deligne Homology.
3.4 Poincaré Duality Theories.
4 Riemann
Roch, K
theory and motivic cohomology.
4.1 Grothendieck
Riemann
Roch.
4.2 Adams Operations.
4.3 Riemann
Roch for Singular Varieties.
4.4 Higher Algebraic K
Theory.
4.5 Adams Operations in Higher Algebraic K
Theory.
4.6 Chern Classes in Higher Algebraic K
Theory.
4.7 Gillet's Riemann
Roch Theorem.
4.8 Motivic Cohomology.
5 Regulators, Deligne's conjecture and Beilinson's first conjecture.
5.1 Borel's Regulator.
5.2 Beilinson's Regulator.
5.3 Special Cases and Zagier's Conjecture.
5.4 Riemann Surfaces.
5.5 Models over Spec(Z).
5.6 Deligne's Conjecture.
5.7 Beilinson's First Conjecture.
6 Beilinson's second conjecture.
6.1 Beilinson's Second Conjecture.
6.2 Hilbert Modular Surfaces.
7 Arithmetic intersections and Beilinson's third conjecture.
7.1 The Intersection Pairing.
7.2 Beilinson's Third Conjecture.
8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel
Jacobi maps.
8.1 The Hodge Conjecture.
8.2 Absolute Hodge Cohomology.
8.3 Geometric Interpretation.
8.4Abel
Jacobi Maps.
8.5 The Tate Conjecture.
8.6 Absolute Hodge Cycles.
8.7 Motives.
8.8 Grothendieck's Conjectures.
8.9 Motives and Cohomology.
9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.
9.1 Tate Modules.
9.2 Mixed Realizations.
9.3 Weights.
9.4 Hodge and Tate Conjectures.
9.5 The Homological Regulator.
10 Examples and Results.
10.1 B & S
D revisited.
10.2 Deligne's Conjecture.
10.3 Artin and Dirichlet Motives.
10.4 Modular Curves.
10.5 Other Modular Examples.
10.6 Linear Varieties.
dimensional case: number fields.
1.1 Class Numbers.
1.2 Dirichlet L
Functions.
1.3 The Class Number Formula.
1.4 Abelian Number Fields.
1.5 Non
abelian Number Fields and Artin L
Functions.
2 The one
dimensional case: elliptic curves.
2.1 General Features of Elliptic Curves.
2.2 Varieties over Finite Fields.
2.3 L
Functions of Elliptic Curves.
2.4 Complex Multiplication and Modular Elliptic Curves.
2.5 Arithmetic of Elliptic Curves.
2.6 The Tate
Shafarevich Group.
2.7 Curves of Higher Genus.
2.8 Appendix.
3 The general formalism of L
functions, Deligne cohomology and Poincaré duality theories.
3.1 The Standard Conjectures.
3.2 Deligne
Beilinson Cohomology.
3.3 Deligne Homology.
3.4 Poincaré Duality Theories.
4 Riemann
Roch, K
theory and motivic cohomology.
4.1 Grothendieck
Riemann
Roch.
4.2 Adams Operations.
4.3 Riemann
Roch for Singular Varieties.
4.4 Higher Algebraic K
Theory.
4.5 Adams Operations in Higher Algebraic K
Theory.
4.6 Chern Classes in Higher Algebraic K
Theory.
4.7 Gillet's Riemann
Roch Theorem.
4.8 Motivic Cohomology.
5 Regulators, Deligne's conjecture and Beilinson's first conjecture.
5.1 Borel's Regulator.
5.2 Beilinson's Regulator.
5.3 Special Cases and Zagier's Conjecture.
5.4 Riemann Surfaces.
5.5 Models over Spec(Z).
5.6 Deligne's Conjecture.
5.7 Beilinson's First Conjecture.
6 Beilinson's second conjecture.
6.1 Beilinson's Second Conjecture.
6.2 Hilbert Modular Surfaces.
7 Arithmetic intersections and Beilinson's third conjecture.
7.1 The Intersection Pairing.
7.2 Beilinson's Third Conjecture.
8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel
Jacobi maps.
8.1 The Hodge Conjecture.
8.2 Absolute Hodge Cohomology.
8.3 Geometric Interpretation.
8.4Abel
Jacobi Maps.
8.5 The Tate Conjecture.
8.6 Absolute Hodge Cycles.
8.7 Motives.
8.8 Grothendieck's Conjectures.
8.9 Motives and Cohomology.
9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.
9.1 Tate Modules.
9.2 Mixed Realizations.
9.3 Weights.
9.4 Hodge and Tate Conjectures.
9.5 The Homological Regulator.
10 Examples and Results.
10.1 B & S
D revisited.
10.2 Deligne's Conjecture.
10.3 Artin and Dirichlet Motives.
10.4 Modular Curves.
10.5 Other Modular Examples.
10.6 Linear Varieties.