72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
Jetzt verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
  • Format: PDF

This book provides readers with a comprehensive overview of the state-of-the-art in optical contactless probing approaches, in order to fill a gap in the literature on VLSI Testing. The author highlights the inherent difficulties encountered with the mechanical probe and testability design approaches for functional and internal fault testing and shows how contactless testing might resolve many of the challenges associated with conventional mechanical wafer testing. The techniques described in this book address the increasing demands for internal access of the logic state of a node within a chip under test.…mehr

Produktbeschreibung
This book provides readers with a comprehensive overview of the state-of-the-art in optical contactless probing approaches, in order to fill a gap in the literature on VLSI Testing. The author highlights the inherent difficulties encountered with the mechanical probe and testability design approaches for functional and internal fault testing and shows how contactless testing might resolve many of the challenges associated with conventional mechanical wafer testing. The techniques described in this book address the increasing demands for internal access of the logic state of a node within a chip under test.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Selahattin Sayil is a Professor in the Philip M. Drayer Department of Electrical Engineering at Lamar University. His research focuses on VLSI Testing, Contactless Testing, Radiation effects modeling and hardening at the circuit level, Reliability analysis of low power designs, and Interconnect modeling and noise prediction.