72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
36 °P sammeln
Jetzt verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
36 °P sammeln
  • Format: PDF

This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u ?? u = u u in ? ×(0,+?) ? tt ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0,+?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t n where ? is a bounded domain of R ,n? 1, with a smooth boundary ? = ? ?? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u ?? u =?f (u)in? ×(0,+?) ? tt 0 ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 2) ? ? u…mehr

Produktbeschreibung
This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u ?? u = u u in ? ×(0,+?) ? tt ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0,+?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t n where ? is a bounded domain of R ,n? 1, with a smooth boundary ? = ? ?? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u ?? u =?f (u)in? ×(0,+?) ? tt 0 ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 2) ? ? u =?g(u )?f (u)on? ×(0,+?) ? t 1 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s? 0, that is, f represents, for i i i each i, an attractive force.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Thierry Cazenave, Université Pierre et Marie Curie, Paris, France / David Costa, University of Nevada, NV, USA