The monograph first provides a review of the optimization concepts that underlie the rest of the book: fuzzy programming; multiobjective programming; stochastic programming; and genetic algorithms. The authors then apply these concepts to noncooperative decision making in hierarchical organizations, using multiobjective and two-level linear programming, and then consider cooperative decision making in hierarchical organizations. They then present applications in a work force assignment problem; a transportation problem; and an inventory and production problem in supply chain management. After examining possible future directions in two-level programming, including use of metaheuristics and genetic algorithms to help manage large numbers of integer decision variables, they present conclusions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"I am very glad to have reviewed this book and believe that it is a great addition to the linear programming and optimization community. Any researcher who has to deal with multi-level linear programming will find this book a valuable reference. It also can be a good collection for university libraries. Some elegant ideas inside the multi-level linear programming formulism, such as ambiguity of human judgments, uncertainty description of feature events in decision-making process, can open doors for future thorough and innovative research." (C. Cai, Journal of the Operational Research Society, Vol. 62 (2), 2011)
"The book presents an in-depth study of bilevel programs making use of models and methods in this class and will satisfy readers interested in this area of mathematical programming. The book also contains many good examples ... . The target audience of the book is upper-level undergraduate and graduate students and researchers in the area of operations research and mathematical programming. The book will also be of interest to practitioners using bilevel modeling and decision-making and decision makers in hierarchical organizations." (Margaret M. Wiecek, Mathematical Reviews, Issue 2011 j)