Data Analytics, Computational Statistics, and Operations Research for Engineers (eBook, PDF)
Methodologies and Applications
Redaktion: Samanta, Debabrata; Hammoudeh, Mohammad; Chilamkurti, Naveen; Islam, Sk Hafizul
Alle Infos zum eBook verschenken
Data Analytics, Computational Statistics, and Operations Research for Engineers (eBook, PDF)
Methodologies and Applications
Redaktion: Samanta, Debabrata; Hammoudeh, Mohammad; Chilamkurti, Naveen; Islam, Sk Hafizul
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
With the rapidly advancing fields of Data Analytics and Computational Statistics, it's important to keep up with current trends, methodologies, and applications. This book investigates the role of data mining in computational statistics for machine learning. It offers applications that can be used in various domains and examines the role of transformation functions in optimizing problem statements.
Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques,…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Data Analytics, Computational Statistics, and Operations Research for Engineers (eBook, ePUB)49,95 €
- Sustainability, Big Data, and Corporate Social Responsibility (eBook, PDF)47,95 €
- Adedeji B. BadiruData Analytics (eBook, PDF)63,95 €
- Blockchain Technology for Data Privacy Management (eBook, PDF)49,95 €
- Privacy Vulnerabilities and Data Security Challenges in the IoT (eBook, PDF)58,95 €
- Data Security in Internet of Things Based RFID and WSN Systems Applications (eBook, PDF)45,95 €
- Jhareswar MaitiMultivariate Statistical Modeling in Engineering and Management (eBook, PDF)65,95 €
-
-
-
Data Analytics, Computational Statistics, and Operations Research for Engineers: Methodologies and Applications presents applications of computationally intensive methods, inference techniques, and survival analysis models. It discusses how data mining extracts information and how machine learning improves the computational model based on the new information.
Those interested in this reference work will include students, professionals, and researchers working in the areas of data mining, computational statistics, operations research, and machine learning.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 274
- Erscheinungstermin: 24. März 2022
- Englisch
- ISBN-13: 9781000550429
- Artikelnr.: 63705004
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 274
- Erscheinungstermin: 24. März 2022
- Englisch
- ISBN-13: 9781000550429
- Artikelnr.: 63705004
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Computation. 2. Numerical Algorithm and Software for Statistical
Computation. 3. Impact of Modern Computer on Statistical Computing. 4.
Numerical Methods as the Backbone of Simulation Techniques. 5. Linear
Algebra and Optimization for Computation. 6. Role of Transformation
Functions in Restructuring the Problem Statements. 7. Optimization of
Computing Resources. 8. Role of Statistical Graphics in Data Analysis. Part
2: Statistical Methodology. 9. Computationally Intensive Statistical
Methods. 10. Techniques in Computational Inferencing. 11. Computer Models
for Design of Experiments. 12. Bayesian Analysis for Computational
Inference. 13. Survival Analysis Models in Computational Methods. 14.
Impact of Data Mining to the Computational Statistics for Machine Learning.
Part 3: Computational Statistics Applications. 15. Computational Statistics
in Finance and Economics. 16. Computationally Intensive Statistical Methods
in Human Biology. 17. Computational Statistics within Clinical Research.
18. Computational Statistics for Network Security.
Computation. 2. Numerical Algorithm and Software for Statistical
Computation. 3. Impact of Modern Computer on Statistical Computing. 4.
Numerical Methods as the Backbone of Simulation Techniques. 5. Linear
Algebra and Optimization for Computation. 6. Role of Transformation
Functions in Restructuring the Problem Statements. 7. Optimization of
Computing Resources. 8. Role of Statistical Graphics in Data Analysis. Part
2: Statistical Methodology. 9. Computationally Intensive Statistical
Methods. 10. Techniques in Computational Inferencing. 11. Computer Models
for Design of Experiments. 12. Bayesian Analysis for Computational
Inference. 13. Survival Analysis Models in Computational Methods. 14.
Impact of Data Mining to the Computational Statistics for Machine Learning.
Part 3: Computational Statistics Applications. 15. Computational Statistics
in Finance and Economics. 16. Computationally Intensive Statistical Methods
in Human Biology. 17. Computational Statistics within Clinical Research.
18. Computational Statistics for Network Security.