129,95 €
129,95 €
inkl. MwSt.
Erscheint vor. 20.11.25
payback
65 °P sammeln
129,95 €
129,95 €
inkl. MwSt.
Erscheint vor. 20.11.25

Alle Infos zum eBook verschenken
payback
65 °P sammeln
Als Download kaufen
129,95 €
inkl. MwSt.
Erscheint vor. 20.11.25
payback
65 °P sammeln
Jetzt verschenken
129,95 €
inkl. MwSt.
Erscheint vor. 20.11.25

Alle Infos zum eBook verschenken
payback
65 °P sammeln

Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
  • Format: PDF

This book introduces a pioneering framework for monitoring and controlling autonomous energy systems, distinguished by its use of physics-informed deep neural networks. These networks provide accurate estimations and forecasts, interlacing with advanced composite optimization algorithms to simplify the complex processes of state estimation. This approach not only boosts operational efficiency but also maximizes flexibility through a data-driven methodology integrated with physics-based principles. The framework leverages the power of neural networks to define the intricate relationship between…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 13.83MB
Produktbeschreibung
This book introduces a pioneering framework for monitoring and controlling autonomous energy systems, distinguished by its use of physics-informed deep neural networks. These networks provide accurate estimations and forecasts, interlacing with advanced composite optimization algorithms to simplify the complex processes of state estimation. This approach not only boosts operational efficiency but also maximizes flexibility through a data-driven methodology integrated with physics-based principles. The framework leverages the power of neural networks to define the intricate relationship between system states and control policies, offering precise, robust control strategies that adapt to dynamically changing system conditions. This book is essential reading for professionals looking to enhance the performance and flexibility of energy systems through cutting-edge technology.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Gang Wang received a B.Eng. degree in automatic control and a Ph.D. degree in control science and engineering from the Beijing Institute of Technology, Beijing, China, and a Ph.D. degree in electrical and computer engineering from the University of Minnesota, Minneapolis, MN, USA. He is currently Professor with the School of Automation, Beijing Institute of Technology.

Jian Sun received his B.Sc. degree from the Department of Automation and Electric Engineering, Jilin Institute of Technology, Changchun, China, the M.Sc. degree from the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CAS), Changchun, China, and the Ph.D. degree from the Institute of Automation, CAS, Beijing, China. He is currently Professor with the School of Automation, Beijing Institute of Technology.

Jie Chen received his B.Sc., M.Sc., and the Ph.D. degrees in Control Theory and Control Engineering from the Beijing Institute of Technology, Beijing, China. He is currently Professor with the School of Automation, Beijing Institute of Technology and Director of the National Key Laboratory of Autonomous Intelligent Unmanned Systems (KAIUS).